Climate change is significantly altering viticultural practices worldwide,with profound implications for the accumulation of polyphenolic compounds that determine wine’s sensory and health properties.This review summ...Climate change is significantly altering viticultural practices worldwide,with profound implications for the accumulation of polyphenolic compounds that determine wine’s sensory and health properties.This review summarizes the effects of climate change,particularly rising temperatures,shifting precipitation patterns,and altered light conditions-on polyphenol synthesis in Vitis amurensis(V.amurensis)grapes from Northeast China,the country’s highest-latitude wine region.Key findings reveal that:(1)Temperature increases accelerate phenological stages but differentially impact polyphenols,suppressing anthocyanins and flavonols while promoting tannins;(2)Precipitation variability induces water stress that can enhance anthocyanin content under moderate drought but reduce quality during extreme events;(3)Declining sunshine duration may limit polyphenol production,though certain cultivars(e.g.,Beibinghong)exhibit adaptability to low light conditions.The region’s unique climatic trends-stronger winter warming and reduced summer precipitation-paradoxically offer potential benefits by extending the growing season while minimizing heat stress during critical ripening periods.It is highlighted how V.amurensis,with its cold hardiness and naturally high polyphenol content(notably anthocyanins and resveratrol),could become increasingly valuable under climate change.However,strategic adaptation through cultivar selection,vineyard management,and stress-responsive breeding will be critical to maintain wine quality.This synthesis provides a framework for understanding climate-polyphenol dynamics in cool-climate viticulture and outlines research priorities to safeguard the future of Northeast China’s distinctive wine industry.展开更多
GRAPES(global and regional assimilation and prediction system)是由中国气象科学研究院灾害天气国家重点实验室自主研究开发的中国新一代数值天气预报系统,其目标是科研/业务通用.为了实现这一目标,结合高性能计算机的体系结构设计...GRAPES(global and regional assimilation and prediction system)是由中国气象科学研究院灾害天气国家重点实验室自主研究开发的中国新一代数值天气预报系统,其目标是科研/业务通用.为了实现这一目标,结合高性能计算机的体系结构设计并实现模式的并行计算是必不可少的.作为核心开发技术之一,GRAPES系统设计并实现了模式的并行计算方案,包括中尺度有限区模式的并行计算和全球模式并行计算.GRAPES模式并行计算版本在IBM-Cluster1600上的测试表明,GRAPES模式的并行计算程序正确、稳定、有效,为其业务化之路奠定了基础,同时也为系统未来的可持续开发、优化创造了条件.展开更多
The use of the RAPD technique was investigated on a set of 73 genotypes of 18 wild grape species native to China, and one interspecific hybrid, seven Vitis vinifera L. cultivars, one rootstock cultivar and one str...The use of the RAPD technique was investigated on a set of 73 genotypes of 18 wild grape species native to China, and one interspecific hybrid, seven Vitis vinifera L. cultivars, one rootstock cultivar and one strain of V. riparia L. Genetic diversity among these grapes was investigated based on RAPD analysis. The screening of 280 decamer oligonucleotides allowed the selection of 20 primers used for the analysis. A total of 191 RAPD markers were produced from the 20 selected primers. Relationships among the 83 clones or accessions based on their genetic distances were clustered using unweighted pair_group method arithmetic average (UPGMA) analysis in a dendrogram. Twenty_two clusters which fortunately adapted to 22 grape species level were clearly resolved on the dendrogram. The 18 wild grape species native to China were grouped into ten subclusters. The largest distance was found between V. riparia L., V. vinifera L., interspecific hybrid ( V. vinifera L.× V. larbrusca L.) and the wild grapes native to China. Among the wild grapes native to China, the largest distance was found between V. hancockii Hance and the other wild species. V. qinlingensis P.C.He was the second. Large genetic variation occurred among the different flower_type clones in one species.展开更多
文摘Climate change is significantly altering viticultural practices worldwide,with profound implications for the accumulation of polyphenolic compounds that determine wine’s sensory and health properties.This review summarizes the effects of climate change,particularly rising temperatures,shifting precipitation patterns,and altered light conditions-on polyphenol synthesis in Vitis amurensis(V.amurensis)grapes from Northeast China,the country’s highest-latitude wine region.Key findings reveal that:(1)Temperature increases accelerate phenological stages but differentially impact polyphenols,suppressing anthocyanins and flavonols while promoting tannins;(2)Precipitation variability induces water stress that can enhance anthocyanin content under moderate drought but reduce quality during extreme events;(3)Declining sunshine duration may limit polyphenol production,though certain cultivars(e.g.,Beibinghong)exhibit adaptability to low light conditions.The region’s unique climatic trends-stronger winter warming and reduced summer precipitation-paradoxically offer potential benefits by extending the growing season while minimizing heat stress during critical ripening periods.It is highlighted how V.amurensis,with its cold hardiness and naturally high polyphenol content(notably anthocyanins and resveratrol),could become increasingly valuable under climate change.However,strategic adaptation through cultivar selection,vineyard management,and stress-responsive breeding will be critical to maintain wine quality.This synthesis provides a framework for understanding climate-polyphenol dynamics in cool-climate viticulture and outlines research priorities to safeguard the future of Northeast China’s distinctive wine industry.
文摘GRAPES(global and regional assimilation and prediction system)是由中国气象科学研究院灾害天气国家重点实验室自主研究开发的中国新一代数值天气预报系统,其目标是科研/业务通用.为了实现这一目标,结合高性能计算机的体系结构设计并实现模式的并行计算是必不可少的.作为核心开发技术之一,GRAPES系统设计并实现了模式的并行计算方案,包括中尺度有限区模式的并行计算和全球模式并行计算.GRAPES模式并行计算版本在IBM-Cluster1600上的测试表明,GRAPES模式的并行计算程序正确、稳定、有效,为其业务化之路奠定了基础,同时也为系统未来的可持续开发、优化创造了条件.
基金openfoundationofNationalKeyBiotechnologyLaboratoryforTropicalCropsHaikou China
文摘The use of the RAPD technique was investigated on a set of 73 genotypes of 18 wild grape species native to China, and one interspecific hybrid, seven Vitis vinifera L. cultivars, one rootstock cultivar and one strain of V. riparia L. Genetic diversity among these grapes was investigated based on RAPD analysis. The screening of 280 decamer oligonucleotides allowed the selection of 20 primers used for the analysis. A total of 191 RAPD markers were produced from the 20 selected primers. Relationships among the 83 clones or accessions based on their genetic distances were clustered using unweighted pair_group method arithmetic average (UPGMA) analysis in a dendrogram. Twenty_two clusters which fortunately adapted to 22 grape species level were clearly resolved on the dendrogram. The 18 wild grape species native to China were grouped into ten subclusters. The largest distance was found between V. riparia L., V. vinifera L., interspecific hybrid ( V. vinifera L.× V. larbrusca L.) and the wild grapes native to China. Among the wild grapes native to China, the largest distance was found between V. hancockii Hance and the other wild species. V. qinlingensis P.C.He was the second. Large genetic variation occurred among the different flower_type clones in one species.