The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho...The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho-types from the quarries in Kabbaldurga reveal a complex geological history in the Archean and early Paleoprotero-zoic.Magmatic protoliths predominantly record Paleoar-chean ages between 3.4 and 3.2 Ga.Combined U-Pb and Lu-Hf signatures indicate a history of recurrent crustal anatexis,juvenile magmatic input,and felsic injections.Mesoarchaean magmatic charnockites were generated mainly from hornblende-dehydration melting of Paleoar-chaean mafic rocks.In addition,Peninsular Gneissic Com-plex of the Dharwar Craton,commonly described as TTG suites,are likely generated by melting of hydrated basalt.The new data are consistent with the idea of a convecting magmatic cycle and also support the proposal that the southern Dharwar Craton comprises a tilted cross-sec-tion through the Archaean crust.Paleoproterozoic high-temperature event is documented here as a complex unit involving juvenile mafic magmatism,granulite facies imprints and crustal anatexis as well as felsic injections,occurring within a short time period around 2.5 Ga.展开更多
The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history...The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.展开更多
Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining pe...Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining petrographic observations,mineral chemistry,REE in Grt-Cpx thermobarometry,and previous work,at least four stages are suggested for the metamorphic evolution of the mafic granulites in the South Altun,including the protolith stage,the high-pressure granulite-facies stage(909-1037℃and 17.3-30 kbar),medium-pressure granulite-facies overprint(9.1-11.9 kbar and 753-816℃),and subsequent late amphibolite-greenschist-facies metamorphism.Zircon U-Pb dating shows that the mafic granulites underwent high-pressure granulite-facies metamorphism at 497.2±3.7 Ma,while the leucosome formed at 498.2±2.9 Ma.Thus,the leucosomes from the host mafic granulite may have been formed at the high-pressure granulite-facies metamorphic event.The characteristics of zircon morphology,mineral inclusions,low Th/U values,HREE enrichment,and negative Eu anomalies indicate that these zircons from the leucosome were formed from the metamorphic melts.The characteristics of whole-rock major and trace elements as well as Hf isotopic features of zircons between the leucosomes and the host mafic granulite indicate that the melt may have been generated by the partial melting of the host mafic granulite.展开更多
The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating wa...Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.展开更多
The Southern Granulite Terrane(SGT),the wedgeshaped southern termination of Peninsular India,is a mosaic of several crustal blocks and intervening collisional sutures/shears which developed through multiple orogenic c...The Southern Granulite Terrane(SGT),the wedgeshaped southern termination of Peninsular India,is a mosaic of several crustal blocks and intervening collisional sutures/shears which developed through multiple orogenic cycles during Mesoarchean to late Neoproterozoic-Cambrian.The SGT has been the focus of global geoscience world for more than four decades mainly with regard to deep crustal processes,crustmantle architecture,polyphase structural evolution,extreme crustal metamorphism,growth and recycling of continental crust,and the assembly-evolution-disruption of supercontinents through time,among other aspects.展开更多
Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Pen...Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.展开更多
Garnet-rich granulite xenoliths collected from the Hannuoba basalts, the North China craton (NCC), were studied to reveal the Mesozoic crnst-mantle interaction. These xenoliths are characterized by low SiO2 (37.7 w...Garnet-rich granulite xenoliths collected from the Hannuoba basalts, the North China craton (NCC), were studied to reveal the Mesozoic crnst-mantle interaction. These xenoliths are characterized by low SiO2 (37.7 wt.%-46.0 wt.%) and high Al2O3 (10.8 wt.%-17.9 wt.%) contents. Their Mg# (60-75, Mg#=100×Mg/(Mg+Fe), atomic number) are relatively low for their low SiO2 contents. They have low rare-earth element (REE) contents and LREE-rich REE patterns, and show remarkable enrichments in Sr relative to the adjacent REE. Some of them exhibit convex RISE patterns with a maximum at Nd and remarkably positive Eu anomalies. Taking into account their high garnet mode (generally 〉30%), these features suggest that they are high-pressure metamorphic products of lowpressure cumulates (e.g., gabbro) after it had been depressed into the garnet stability field. They have evolved Nd and Sr isotopic compositions (143Nd/144Nd=0.511 763-0.512 173, STSr/86Sr=0.705 34-0.706 99) and fall in the trend defined by the 〉110 Ma Mesozoic basalts and high-Mg# andesites from the NCC. Zircon U-Pb dating by LA-ICP-MS shows a wide age range from 83 to 2 581 Ma, most of which cluster in 83-134 Ma. CL images of some Mesozoic zircons from the granulites show typical features of igneous zircons, providing direct evidence for the Mesozoic underplating event in this area. Neither peridotite-derived basaltic underplating model nor residue model of ancient lower crust after lithospheric thinning alone can reasonably explain the above features of the garnet-Hch granulite xenoliths. Combined with the previous research, we propose that most of the granulite xenoliths from the Hannuoba basalts are products of the Mesozoic magmatie underplating and mixing with the pre-existing lower crust (i.e., AFC process). However, the melts could be mostly derived from partial melting of basaltic layers that were previously subducted (a fossil oceanic slab) or underplated into the base of the lithospheric mantle, or from partial melting of Archean lithospheric mantle that was variably hybridised by melts derived from foundered lower crustal edogite, although it cannot be excluded that some of the melts were derived from depleted man. tie peridotite. In other words, parent melts of most granulite xenoliths could share the same petrogenesis as the〉110 Ma Mesozoic basalts from the NCC.展开更多
Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium ...Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium modeling studies,the P-T conditions and mineral assemblages of pelitic granulites can be divided into four metamorphic stages:the prograde metamorphic stage M1 defined by the stable mineral assemblage of Grt1(garnet core)+Pl+Bt+Kfs+Qz+Rt,the peak pressure Pmax stage M2 indicated by Grt2(garnet mantle)+Kfs±(Ky)+Rt+Qz+Liq(melt),peak temperature Tmax stage M3 characterized by Grt3(garnet rim)+Sill+Pl+Kfs+Qz+Ilm+Liq,and retrograde stage M4 represented by Grt(in matrix)+Kfs+Sill+Bt+Pl+Qz+Ilm.By using the THERMOCALC V340,the P-T conditions are estimated at^13.8–14.1 kbar and^840–850℃at stage M2,and 7–7.2 kbar and 909–915℃for the Tmax stage M3,indicating an ultra-high temperature(UHT)metamorphic overprinting during decompression and heating process after high pressure granulite facies metamorphism.The mineral assemblages and their P-T conditions presented a clockwise P-T trajectory for the Huangtuyao pelitic granulites.The major metamorphic events at^1.95 and^1.88 Ga obtained by the zircon U-Pb dating suggest that pelitic granulites from the Huangtuyao area has undergone HP granulite metamorphism which probably occurred in the prograde metamorphism and related to the collision between the Ordos and the Yinshan blocks,and afterwards UHT metamorphism is related to crustal extension after continental-continental collision.展开更多
The Himalayan Orogen, resulting from the Tertiary collision of Indian and Asian continents, is a natural laboratory for studying metamorphism, partial melting and granite formation of collisional orogens. However, met...The Himalayan Orogen, resulting from the Tertiary collision of Indian and Asian continents, is a natural laboratory for studying metamorphism, partial melting and granite formation of collisional orogens. However, metamorphic and anatectic conditions and timescales of meta-mafic rocks in the Greater Himalayan Sequences (GHS) in the east-central Himalaya remain controversial, in this paper, we conduct a study of petrology and geochronology of mafic granulite from the Eastern Himalayan Syntaxis (EHS). The mafic granulite with abundant leucosome bands occurs as layers within felsic granulites and is well deformed. The granulite consists of garnet, plagioclase, amphibole and quartz with minor clinopyroxene, orthopyroxene, biotite, rutile, titanite and ilmenite. The garnet has growth compositional zoning and contains abundant mineral inclusions in its core. Peak metamorphic mineral assemblage of the granulite is garnet, amphibole, plagioclase, quartz, clinopyroxene and futile, recording a high-pressure (HP) and high-temperature (HT) peak-metamorphism under conditions of 14-15.5 kbar and 780-790 ℃ in the presence of melt. The reconstructed clockwise P-T path is characterized by an early heating and burial prograde metamorphism, and late isothermal and cooling decompression retrogression. The granulite witnessed a long lasting HT metamorphism, partial melting and melt crystallization process which began at ca. 39 Ma and lasted to ca. 11 Ma. The present study shows that various high-grade rocks of the GHS in the EHS core experienced similar metamorphic conditions and P-T-t paths, indicating that they occurred as a coherent slab during the subduction and exhumation of Indian lithosphere. The significant melts generated during the prograde metamorphism of the GHS rocks not only contributed to the formation of the Himalayan leucogranite, but also resulted in the rheological weakening and ductile flow of the thickened lower crust of the Himalayan Orogen.展开更多
A ophiolite belt associated with the tectonic melange is recoghzed in northern area of Mian-Lue, southern Qinling. The ophiolite is considered to originate in a island arc. The occurrence of the ophiolite indicates th...A ophiolite belt associated with the tectonic melange is recoghzed in northern area of Mian-Lue, southern Qinling. The ophiolite is considered to originate in a island arc. The occurrence of the ophiolite indicates that a paleo-ocean or finite oceanic basin existed POSt-Prot6rozoic in southern Qiuling, implying the difference of the continental basement of Southern Qinling from the Yangtze craton. The ophiolitc and themelange may mark the paleo-suture zoic between the two plates. The basic granulite is found in eastern area (Anzishan) of the ophiolite belt. The p-T path for metamorphism of the granulite demonstrates a process of continental collision.展开更多
This paper presents the primary results of petrologic, mineralogical and petrochemical studies of garnet-bearing granulite facies rock xenoliths from Xinyang, Henan Province. These xenoliths, which are found in a pipe...This paper presents the primary results of petrologic, mineralogical and petrochemical studies of garnet-bearing granulite facies rock xenoliths from Xinyang, Henan Province. These xenoliths, which are found in a pipe of late Mesozoic volcaniclastic breccia, are of high density (3.13–3.30 g/cm3) and high seismic velocity (Vp = 7.04–7.31 km/s), being products of underplating of basaltic magmas and had experienced granulite facies metamorphism. The underplating and metamorphism took place before the eruption of the host rock. Petrographical studies and equilibrium T-P calculations show that these xenoliths were captured at a 49 km depth and experienced at least a 16 km uplift before they were captured. The dynamics of the uplift could be related to the continent-continent collision between the North China plate and the Yangtze plate during the Triassic.展开更多
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicat...Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.展开更多
High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the ...High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the Jinshuikou cordierite granite on the southern margin of the Qaidam Block, can provide important information about the mantle-crustal interaction and constraints on tectonic tran- sition from Proto-Tethys to Paleo-Tethys. This pluton develops enclaves of mafic granulite, amphibolite and quartzofeldspathic rocks, and is cut by massive monzonitic leuco-granite veins. Zircon and monazite U-Pb dating for the cordierite granite, the granulite enclaves and a massive monzonitic leuco-granite vein reveal that the cordierite granitic magma was generated from Mesoproterozoic continental crust with protolith derived from a provenanee that was composed of 〉2.8 Ga old recycled crustal materials and re- corded a -1.7 Ga magmatic event. The continental crust underwent low-pressure granulite-facies metamorphism at -380 Ma ago, whereas the cordierite granite magmas was generated and emplaced during 380 Ma, followed by intrusion of the massive monzonitic leuco-granite vein at circa 370-330 Ma. These data suggest that after the final closure of Proto-Tethys Ocean spreading along the southern Qaidam Block at -420 Ma, break-off of the subducted slab or delamination of the lower crustal base and upwelling of the asthenospheric mantle beneath the southern Qaidam Block occurred before the Mid-Devonian, and that the initiation of the Paleo-Tethys tectonics might initiate near the end of Early-Carboniferous in the East Kunlun-Qaidam region, East Asia.展开更多
According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith ag...According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith age of intermediate acid granulites is probably more than 904 Ma, which is close to the age of the basic granulites. The basic granulites would be the nature occurrence of basic magma underplating beneath the base of lower crust in the North Qinling crustal vertical growth event at about 1 000 Ma. However, the intermediate acid granulites were the result of the mixing fusion between the lower crust material and the underplating basic magma, which shows a strong crust mantle interaction. The 470-480 Ma are the peak metamorphic ages of the basic and intermediate acid granulites, which related to the crust bi direction shortening and crust thickening due to the Erlangping back arc basin southward subduction and the paleo Qinling oceanic plate northward subduction.展开更多
Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.A...Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.Although a lot of studies have been conducted on rocks in this belt,the rock association and tectonic background of the ophiolitic slice are still in dispute.A detailed study on petrology,phase equilibrium modeling and U-Pb zircon ages have been performed on the metagabbro vein in peridotite unit to constrain the tectonic evolution of the Yushugou granulite-peridotite complex.Three stages of mineral assemblage in the metagabbro were defined as stage I:Cpx^A+Opx^A+Pl^A,which represents the original minerals of the metagabbro vein;stage II:Cpx^B+Opx^B+Pl^B+Spl,which represents the mineral assemblage of granulite facies metamorphism with peak P-T conditions of 4.2–6.9 kbar and 940–1070℃;stage III is characterized by the existence of prehnite,thomsonite and amphibole in the matrix,indicating that the metagabbro vein may be influenced by fluids during retrograde metamorphism.Combined with the crosscut relationship,it can be deduced that the metagabbro vein,together with the peridotite in Yushugou granulite-peridotite complex has experienced similar high-temperature granulite facies metamorphism.The zircon chronological data shows that the protolith age of the metagabbro vein is 400.5±6.2 Ma,reflecting Devonian magmatism event and the granulite facies metamorphism occurred at^270 Ma which may be related to the post-collisional magmatism.展开更多
We report preliminary results of a geochemical study on banded iron formations (BIFs) in the Zhaojiayangpo (赵家阳坡) area from the Kongling (崆岭) Group in the northern Huangling (黄陵) anticline, on the nort...We report preliminary results of a geochemical study on banded iron formations (BIFs) in the Zhaojiayangpo (赵家阳坡) area from the Kongling (崆岭) Group in the northern Huangling (黄陵) anticline, on the northern margin of the Yangtze craton. The CL (cathodoluminescence) images of zircons mostly have sector zoning, fir-tree zoning and patched zoning, and a few show core-rim tex-tures with rims having patched zoning. The calculated formation temperatures using the Ti-in-zircon thermometer are 660-808 ℃ (714 ℃C in aver-age), all indicating that the BIFs underwent granulite facies metamorphism. The age of zir-cons with granulite facies metamorphism is 1 990±14 Ma by LA-ICP-MS U-Pb dating, indi-cating that there was a significant granulite fa-cies tectonothermal event in the northern Huangling anticline in the Paleoproterozoic, which may be related with tectonic thermal events of the metamorphism caused by the as-sembly of the Columbia supercontinent with South China. Moreover, the REE pattern ischaracterized by depletion in LREE while relatively flat in HREE, LaN/YbN=0.26, with a positive Eu anomaly (Eu/Eu^*---1.59), which reveals its hydrothermal sedimentation origin and it may have formed in the environment of submarine exhalation.展开更多
Metamorphic xenoliths within the Nushan alkali basalt of northeastern Anhui (NEA),China ,are from the middle-lower crust.They could be divided into two end-members:basic and acid.Interme-diate xenoliths are scarcely f...Metamorphic xenoliths within the Nushan alkali basalt of northeastern Anhui (NEA),China ,are from the middle-lower crust.They could be divided into two end-members:basic and acid.Interme-diate xenoliths are scarcely found.Basic two-pyroxene granulites(pyriclasites) were formed at 720-810℃ and 7-8kb.Petrological and geochemical studies indicate that the primary magma of the protoliths of basic granulites was derived from the metasomatized upper mantle, while the pa-rental magma of the acid end-member was probably produced by partial melting of the basic rocks. The protoliths of charnockites and grey gneisses represent respectively the early and late crystallization products of the granitic magma.The Nushan granulites are much different in many aspects from the granulites exposed in the northern part of North China ,which implies the inhomogeneity regarding to the early evolution of the North China terranc.展开更多
The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of ...The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of the Xiwangshan area.The rocks contain the representative granulite-facies minerals such as garnet,clinopyroxene,orthopyroxene,plagioclase,amphibolite,rutile and quartz,and also well-developed melt pseudomorph and antiperthite.Although the prograde metamorphic stage(M1)cannot be retrieved due to rare preservation of pre-peak-stage mineral associations,three distinct mineral assemblages that formed in different metamorphic stages can be identified,based on petrography and mineralogy characteristics.The peak stage(M2)is characterized by Grt2+Cpx2+Amp2+Pl2+Rt+melt pseudomorphs,and a post-peak decompression stage(M3)contains a mineral assemblage of Grt3+Opx3+Cpx3+Amp3+Pl3,while a later-retrogression stage(M4)is featured by coronas of Amp4+Pl4 surrounding garnet.By calculating metamorphic P-T conditions using THERMOCALC,stage M2 was constrained to be 13.2–14.8 kbar and 1050–1080℃,and M3 recorded P-T conditions of 5.7–7.3 kbar and 825–875℃,while M4 yielded P of^5 kbar and T of^660℃,consistent with amphibolite facies metamorphism.Taking into account of all these petrological data,we propose that the mafic granulite experienced a high-pressure(HP)and ultra-high temperature(UHT)granulite-facies metamorphism during the peak metamorphism,which was accompanied with a clockwise P-T path.U-Pb dating of metamorphic zircons in the granulites yields two groups of ages at 1853±14 and 1744±44 Ma,respectively.We suggest that the older age corresponded to the HP-UHT metamorphism,while the younger age represented an retrograde metamorphic event during cooling.展开更多
: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks”...: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks” of the Shima eclogite) in the Dabie Mountains. The study shows that these rocks have peak metamorphic ages of 443–455 Ma, which are essentially consistent with that of the Caledonian high—ultrahigh pressure eclogites. This indicates the existence of the Caledonian collisional orogeny in the Dabie Mountains.展开更多
基金funded by the India-Brazil bilateral co-operation Project:INT/BRAZIL/P-02/2013by Indian Statistical Institute,Geoscience Institute of São Paulo University,Brazil and Department of Geology,University of Calcutta.M.Hueck thanks FAPESP for a post-doctoral fellowship(grant 2019/06838-2).
文摘The Southern Granulite Terrane(Dharwar Craton),South India,is a key unit for understanding the origin of charnockite.New U-Pb and Lu-Hf analyses in zircon crys-tals from 16 samples representing a wide variety of litho-types from the quarries in Kabbaldurga reveal a complex geological history in the Archean and early Paleoprotero-zoic.Magmatic protoliths predominantly record Paleoar-chean ages between 3.4 and 3.2 Ga.Combined U-Pb and Lu-Hf signatures indicate a history of recurrent crustal anatexis,juvenile magmatic input,and felsic injections.Mesoarchaean magmatic charnockites were generated mainly from hornblende-dehydration melting of Paleoar-chaean mafic rocks.In addition,Peninsular Gneissic Com-plex of the Dharwar Craton,commonly described as TTG suites,are likely generated by melting of hydrated basalt.The new data are consistent with the idea of a convecting magmatic cycle and also support the proposal that the southern Dharwar Craton comprises a tilted cross-sec-tion through the Archaean crust.Paleoproterozoic high-temperature event is documented here as a complex unit involving juvenile mafic magmatism,granulite facies imprints and crustal anatexis as well as felsic injections,occurring within a short time period around 2.5 Ga.
基金supported by the Natural Science Foundation of Shandong Provence(Grant No.ZR2023MD058)National Natural Science Foundation of China(Grant Nos.42072219,41802201)。
文摘The Yishui complex,located in the western Shandong area of the North China Craton,is representative of the Archean crystalline basement of the North China Craton to explore the early tectonic-thermal evolution history of the Earth.Detailed petrography,mineral chemistry,metamorphic evolution and zircon U-Pb dating are presented for felsic granulite and two-pyroxene granulite from the Yishui complex to contribute to new insights into the Neoarchean tectonic evolution of the North China Craton.Three mineral assemblages are recognized for these granulite samples,including the prograde(M1),peak(M2)and retrograde(M3)mineral assemblages.Conventional geothermobarometry and phase equilibrium modeling yield P-T conditions of 6.5-10.9 kbar/718-839℃ for the peak metamorphism,which define a medium-pressure granulite-facies metamorphism occurred at middle to lower crust.Anticlockwise P-T paths with near-isobaric cooling(IBC)retrograde segments were reconstructed.Zircon LA-ICP-MS U-Pb dating suggests that the protolith of the felsic granulite was emplaced at 2541±7 Ma and the subsequent medium-pressure granulite-facies metamorphism occurred at 2518-2494 Ma.A two-stage mantle plume related crustal-scale sagduction geodynamic regime is proposed in the western Shandong terrane in the Neoarchean.
基金financially supported by the Basic Foundation of Tianjin University of Commercethe Fund from the Key Laboratory of Continental Dynamics of Ministry of Natural Resources(J2306)。
文摘Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining petrographic observations,mineral chemistry,REE in Grt-Cpx thermobarometry,and previous work,at least four stages are suggested for the metamorphic evolution of the mafic granulites in the South Altun,including the protolith stage,the high-pressure granulite-facies stage(909-1037℃and 17.3-30 kbar),medium-pressure granulite-facies overprint(9.1-11.9 kbar and 753-816℃),and subsequent late amphibolite-greenschist-facies metamorphism.Zircon U-Pb dating shows that the mafic granulites underwent high-pressure granulite-facies metamorphism at 497.2±3.7 Ma,while the leucosome formed at 498.2±2.9 Ma.Thus,the leucosomes from the host mafic granulite may have been formed at the high-pressure granulite-facies metamorphic event.The characteristics of zircon morphology,mineral inclusions,low Th/U values,HREE enrichment,and negative Eu anomalies indicate that these zircons from the leucosome were formed from the metamorphic melts.The characteristics of whole-rock major and trace elements as well as Hf isotopic features of zircons between the leucosomes and the host mafic granulite indicate that the melt may have been generated by the partial melting of the host mafic granulite.
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
文摘Information about the protolith of the Huangtuling granulite in North Dabieshan has been unavailable. The complex evolution history of the rock and its host basement must be further discussed. LA-ICP-MS U-Pb dating was conducted on three textural domains in zircon from a high-temperature, high-pressure felsic granulite in the Huangtuling area, North Dabieshan, Central China. The metamorphic growth-derived detrital zircon domain yields a 207^ pb/206^Pb age in the range of (2 49±54 ) -- (2 500±180) Ma. The magmatic genesis-derived detrltal zircon domain gives a 207^pb/ 206^Pb age ranging from 2 628 Ma to 2 690 Ma, with an oldest 206^ pb/ 238^U age of (2 790 ± 150) Ma. The metamorphic overgrowth or metamorphic recrystallization zircon domain yields a diesordia with an upper intercept age of (2 044. 7 ± 29.3 ) Ma. Compositions of the mineral assemblage, major element geochemistry, and especially the complex interior texture of the zircon suggest that the prololith of the felsic granulite is of sedimentary origin. Results show that the protolith material of the granulite came from a provenance with a complex thermal history, i.e. -2.8 Ga magmatlsm and -2.5 Ga metamorphism, and was deposited in a basin not earlier than 2.5 Ga. The high-temperature and high-pressure granulite-facies metamorphic age was precisely constrained at (2.04±0.03) Ga, which indicates the granulite in Huangtuling area should be a relict of a Paleoproterozoic UHT (ultrahigh temperature) metamorphosed slab.
文摘The Southern Granulite Terrane(SGT),the wedgeshaped southern termination of Peninsular India,is a mosaic of several crustal blocks and intervening collisional sutures/shears which developed through multiple orogenic cycles during Mesoarchean to late Neoproterozoic-Cambrian.The SGT has been the focus of global geoscience world for more than four decades mainly with regard to deep crustal processes,crustmantle architecture,polyphase structural evolution,extreme crustal metamorphism,growth and recycling of continental crust,and the assembly-evolution-disruption of supercontinents through time,among other aspects.
基金supported by the National Natural Science Foundation of China (No. 41272072)the NSFC/NRF Research Cooperation Programm (No. 41761144061)the SDUST Research Fund (No. 2015TDJH101)
文摘Petrological analysis and LA-ICP-MS zircon U-Pb dating were conducted on high- pressure marie granulites, which occured as xenolith within TTG gneisses, from the Nanshankou Village of the Jiaobei terrane, Shandong Peninsula in the north-eastern part of the North China Craton (NCC). The mafic HP grannlite is composed of garnet, clinopyroxene, orthopyroxene, amphibole and symplectitic clinopyroxene, orthopyroxene, plagioclase, ilmente and magnetite which were formed after the decomposition of porphyroblastic garnet and clinopyroxene. Four stages of metamorphic mineral assemblages for the mafic HP granulites were constrained by detail petrological and mineralogical in- vestigations. The early prograde assemblage is represented by the mineral inclusions within garnet and clinopyroxene porphyroblasts (Opx1+Pl1+Qtz1), recording the metamorphic conditions at -754-757 ℃, 0.63-0.71 GPa; peak metamorphic conditions were determined at -874-891 ℃, 1.32-1.35 GPa with the mineral assemblage of Grt2+Cpx2+Amp2+Pl2+Qtz2. Retrograde minerals derived from symplectitic assemblage Opx3+Cpx3+Amp3+Pl3+Qtz3+Ilm3±Mag3 were formed at 693-796℃, 0.60-0.84 GPa. A final greensehist to sub-greenschist facies event was recorded by the exsolution of actinolite and albite within a retrograded clinopyroxene, as well as the occurrence of prehnite, chlorite and calcite minerals. Accordingly, a clockwise P-T path was concluded on the basis of the different stages of mineral asseblage. Cathodoluminescence imaging, trace element and U-Pb dating of zircons from the mafic HP granulites recorded similar charactistics for three episodes of Paleo-Meso Proterozoic metamorphic events. These are the metamorphic events preserved in mafic and pelitic granulites in the Jiao-Liao-Ji belt (JLJB) with 207 pb/206pb ages of 2.0-1.9 Ga for peak metamorphism and of 1.86-1.84 Ga for decomposing process, followed by a retrograde amphibolite facies metamorphic event related to the post-orogenic extension at the age of 1.76-1.74 Ga, resulting the exhumation of the granulite to the upper crust level.
基金study was co-supported by the National Natural Science Foundation of China (Nos. 90914007, 40821061, 90714010)the State Administration of Foreign Expert Affairs of China (No. B07039)+1 种基金the MOST Special Fund of State Key Laboratory of Geological Processes and Mineral Resources and State Key Laboratory of Continental Dynamicsthe Special Fund For Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan)
文摘Garnet-rich granulite xenoliths collected from the Hannuoba basalts, the North China craton (NCC), were studied to reveal the Mesozoic crnst-mantle interaction. These xenoliths are characterized by low SiO2 (37.7 wt.%-46.0 wt.%) and high Al2O3 (10.8 wt.%-17.9 wt.%) contents. Their Mg# (60-75, Mg#=100×Mg/(Mg+Fe), atomic number) are relatively low for their low SiO2 contents. They have low rare-earth element (REE) contents and LREE-rich REE patterns, and show remarkable enrichments in Sr relative to the adjacent REE. Some of them exhibit convex RISE patterns with a maximum at Nd and remarkably positive Eu anomalies. Taking into account their high garnet mode (generally 〉30%), these features suggest that they are high-pressure metamorphic products of lowpressure cumulates (e.g., gabbro) after it had been depressed into the garnet stability field. They have evolved Nd and Sr isotopic compositions (143Nd/144Nd=0.511 763-0.512 173, STSr/86Sr=0.705 34-0.706 99) and fall in the trend defined by the 〉110 Ma Mesozoic basalts and high-Mg# andesites from the NCC. Zircon U-Pb dating by LA-ICP-MS shows a wide age range from 83 to 2 581 Ma, most of which cluster in 83-134 Ma. CL images of some Mesozoic zircons from the granulites show typical features of igneous zircons, providing direct evidence for the Mesozoic underplating event in this area. Neither peridotite-derived basaltic underplating model nor residue model of ancient lower crust after lithospheric thinning alone can reasonably explain the above features of the garnet-Hch granulite xenoliths. Combined with the previous research, we propose that most of the granulite xenoliths from the Hannuoba basalts are products of the Mesozoic magmatie underplating and mixing with the pre-existing lower crust (i.e., AFC process). However, the melts could be mostly derived from partial melting of basaltic layers that were previously subducted (a fossil oceanic slab) or underplated into the base of the lithospheric mantle, or from partial melting of Archean lithospheric mantle that was variably hybridised by melts derived from foundered lower crustal edogite, although it cannot be excluded that some of the melts were derived from depleted man. tie peridotite. In other words, parent melts of most granulite xenoliths could share the same petrogenesis as the〉110 Ma Mesozoic basalts from the NCC.
基金supported by funds from the NSFC/NRF Research Cooperation Programme (No. 41761144061)the NSFSD (No. ZR2016DM04)the SDUST Research Fund (No. 2015TDJH101)
文摘Pelitic granulite from the Huangtuyao area,occurrs in the Huai'an Complex,is located in the Trans-North China Orogen of the North China Craton.On the basis of petrolography,mineral component,and phase equilibrium modeling studies,the P-T conditions and mineral assemblages of pelitic granulites can be divided into four metamorphic stages:the prograde metamorphic stage M1 defined by the stable mineral assemblage of Grt1(garnet core)+Pl+Bt+Kfs+Qz+Rt,the peak pressure Pmax stage M2 indicated by Grt2(garnet mantle)+Kfs±(Ky)+Rt+Qz+Liq(melt),peak temperature Tmax stage M3 characterized by Grt3(garnet rim)+Sill+Pl+Kfs+Qz+Ilm+Liq,and retrograde stage M4 represented by Grt(in matrix)+Kfs+Sill+Bt+Pl+Qz+Ilm.By using the THERMOCALC V340,the P-T conditions are estimated at^13.8–14.1 kbar and^840–850℃at stage M2,and 7–7.2 kbar and 909–915℃for the Tmax stage M3,indicating an ultra-high temperature(UHT)metamorphic overprinting during decompression and heating process after high pressure granulite facies metamorphism.The mineral assemblages and their P-T conditions presented a clockwise P-T trajectory for the Huangtuyao pelitic granulites.The major metamorphic events at^1.95 and^1.88 Ga obtained by the zircon U-Pb dating suggest that pelitic granulites from the Huangtuyao area has undergone HP granulite metamorphism which probably occurred in the prograde metamorphism and related to the collision between the Ordos and the Yinshan blocks,and afterwards UHT metamorphism is related to crustal extension after continental-continental collision.
基金co-supported by the National Key Research and Development Project of China (No. 2016YFC0600310)the National Natural Science Foundation of China (Nos. 41230205 and 41602062)the China Geological Survey (No. DD20160122)
文摘The Himalayan Orogen, resulting from the Tertiary collision of Indian and Asian continents, is a natural laboratory for studying metamorphism, partial melting and granite formation of collisional orogens. However, metamorphic and anatectic conditions and timescales of meta-mafic rocks in the Greater Himalayan Sequences (GHS) in the east-central Himalaya remain controversial, in this paper, we conduct a study of petrology and geochronology of mafic granulite from the Eastern Himalayan Syntaxis (EHS). The mafic granulite with abundant leucosome bands occurs as layers within felsic granulites and is well deformed. The granulite consists of garnet, plagioclase, amphibole and quartz with minor clinopyroxene, orthopyroxene, biotite, rutile, titanite and ilmenite. The garnet has growth compositional zoning and contains abundant mineral inclusions in its core. Peak metamorphic mineral assemblage of the granulite is garnet, amphibole, plagioclase, quartz, clinopyroxene and futile, recording a high-pressure (HP) and high-temperature (HT) peak-metamorphism under conditions of 14-15.5 kbar and 780-790 ℃ in the presence of melt. The reconstructed clockwise P-T path is characterized by an early heating and burial prograde metamorphism, and late isothermal and cooling decompression retrogression. The granulite witnessed a long lasting HT metamorphism, partial melting and melt crystallization process which began at ca. 39 Ma and lasted to ca. 11 Ma. The present study shows that various high-grade rocks of the GHS in the EHS core experienced similar metamorphic conditions and P-T-t paths, indicating that they occurred as a coherent slab during the subduction and exhumation of Indian lithosphere. The significant melts generated during the prograde metamorphism of the GHS rocks not only contributed to the formation of the Himalayan leucogranite, but also resulted in the rheological weakening and ductile flow of the thickened lower crust of the Himalayan Orogen.
文摘A ophiolite belt associated with the tectonic melange is recoghzed in northern area of Mian-Lue, southern Qinling. The ophiolite is considered to originate in a island arc. The occurrence of the ophiolite indicates that a paleo-ocean or finite oceanic basin existed POSt-Prot6rozoic in southern Qiuling, implying the difference of the continental basement of Southern Qinling from the Yangtze craton. The ophiolitc and themelange may mark the paleo-suture zoic between the two plates. The basic granulite is found in eastern area (Anzishan) of the ophiolite belt. The p-T path for metamorphism of the granulite demonstrates a process of continental collision.
文摘This paper presents the primary results of petrologic, mineralogical and petrochemical studies of garnet-bearing granulite facies rock xenoliths from Xinyang, Henan Province. These xenoliths, which are found in a pipe of late Mesozoic volcaniclastic breccia, are of high density (3.13–3.30 g/cm3) and high seismic velocity (Vp = 7.04–7.31 km/s), being products of underplating of basaltic magmas and had experienced granulite facies metamorphism. The underplating and metamorphism took place before the eruption of the host rock. Petrographical studies and equilibrium T-P calculations show that these xenoliths were captured at a 49 km depth and experienced at least a 16 km uplift before they were captured. The dynamics of the uplift could be related to the continent-continent collision between the North China plate and the Yangtze plate during the Triassic.
基金China Geological Survey(Grant No.20013000166) Natural Science Foundation of China(Grant No.49902006).
文摘Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The P-T conditions of plagioclase+hornblende symplectites (M3) were estimated at 720-800℃ and 0.55-0.68 GPa, and recrystallized hornblende+plagioclase (M4) at 594-708℃ and 0.26-0.47 GPa. It is impossible to estimate the P-T conditions of the early metamorphic assemblage (M1) because of the absence of modal minerals. The combination of petrographic textures, metamorphic reaction history, thermobarometric data and corresponding isotopic ages defines a clockwise near-isothermal decompression metamorphic path, suggesting that the mafic granulites had undergone initial crustal thickening, subsequent exhumation, and cooling and retrogression. This tectonothermal path is considered to record two major phases of collision which resulted in both the assemblage of Gondwanaland during the Pan-African orogeny at 531 Ma and the collision of the Qiangtang and Lhasa Terranes at 174 Ma, respectively.
基金supported by the National Natural Science Foundation of China(Nos.40972042,40772041,42072030)the Open Research Program of the Key Laboratory of Continental Dynamics,Northwest University
文摘High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the Jinshuikou cordierite granite on the southern margin of the Qaidam Block, can provide important information about the mantle-crustal interaction and constraints on tectonic tran- sition from Proto-Tethys to Paleo-Tethys. This pluton develops enclaves of mafic granulite, amphibolite and quartzofeldspathic rocks, and is cut by massive monzonitic leuco-granite veins. Zircon and monazite U-Pb dating for the cordierite granite, the granulite enclaves and a massive monzonitic leuco-granite vein reveal that the cordierite granitic magma was generated from Mesoproterozoic continental crust with protolith derived from a provenanee that was composed of 〉2.8 Ga old recycled crustal materials and re- corded a -1.7 Ga magmatic event. The continental crust underwent low-pressure granulite-facies metamorphism at -380 Ma ago, whereas the cordierite granite magmas was generated and emplaced during 380 Ma, followed by intrusion of the massive monzonitic leuco-granite vein at circa 370-330 Ma. These data suggest that after the final closure of Proto-Tethys Ocean spreading along the southern Qaidam Block at -420 Ma, break-off of the subducted slab or delamination of the lower crustal base and upwelling of the asthenospheric mantle beneath the southern Qaidam Block occurred before the Mid-Devonian, and that the initiation of the Paleo-Tethys tectonics might initiate near the end of Early-Carboniferous in the East Kunlun-Qaidam region, East Asia.
文摘According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith age of intermediate acid granulites is probably more than 904 Ma, which is close to the age of the basic granulites. The basic granulites would be the nature occurrence of basic magma underplating beneath the base of lower crust in the North Qinling crustal vertical growth event at about 1 000 Ma. However, the intermediate acid granulites were the result of the mixing fusion between the lower crust material and the underplating basic magma, which shows a strong crust mantle interaction. The 470-480 Ma are the peak metamorphic ages of the basic and intermediate acid granulites, which related to the crust bi direction shortening and crust thickening due to the Erlangping back arc basin southward subduction and the paleo Qinling oceanic plate northward subduction.
基金financially supported by the National Natural Science Foundation of China (Nos. 41802070,41572051)the China Postdoctoral Science Foundation (No. 2018M631319)the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources
文摘Yushugou granulite-peridotite complex,located at the east part of the northern margin of South Tianshan,may represent an ophiolitic slice subducted to 40–50 km depth with high-pressure granulite facies metamorphism.Although a lot of studies have been conducted on rocks in this belt,the rock association and tectonic background of the ophiolitic slice are still in dispute.A detailed study on petrology,phase equilibrium modeling and U-Pb zircon ages have been performed on the metagabbro vein in peridotite unit to constrain the tectonic evolution of the Yushugou granulite-peridotite complex.Three stages of mineral assemblage in the metagabbro were defined as stage I:Cpx^A+Opx^A+Pl^A,which represents the original minerals of the metagabbro vein;stage II:Cpx^B+Opx^B+Pl^B+Spl,which represents the mineral assemblage of granulite facies metamorphism with peak P-T conditions of 4.2–6.9 kbar and 940–1070℃;stage III is characterized by the existence of prehnite,thomsonite and amphibole in the matrix,indicating that the metagabbro vein may be influenced by fluids during retrograde metamorphism.Combined with the crosscut relationship,it can be deduced that the metagabbro vein,together with the peridotite in Yushugou granulite-peridotite complex has experienced similar high-temperature granulite facies metamorphism.The zircon chronological data shows that the protolith age of the metagabbro vein is 400.5±6.2 Ma,reflecting Devonian magmatism event and the granulite facies metamorphism occurred at^270 Ma which may be related to the post-collisional magmatism.
基金supported by the Postdoctoral Science Foundation (No. 20100471203)the Ministry of Land and Resources(No. 1212010670104)+1 种基金the National Natural Science Foundation of China (Nos. 91014002, 40821061, 41272242)Ministry of Education of China (Nos. B07039, TGRC201024)
文摘We report preliminary results of a geochemical study on banded iron formations (BIFs) in the Zhaojiayangpo (赵家阳坡) area from the Kongling (崆岭) Group in the northern Huangling (黄陵) anticline, on the northern margin of the Yangtze craton. The CL (cathodoluminescence) images of zircons mostly have sector zoning, fir-tree zoning and patched zoning, and a few show core-rim tex-tures with rims having patched zoning. The calculated formation temperatures using the Ti-in-zircon thermometer are 660-808 ℃ (714 ℃C in aver-age), all indicating that the BIFs underwent granulite facies metamorphism. The age of zir-cons with granulite facies metamorphism is 1 990±14 Ma by LA-ICP-MS U-Pb dating, indi-cating that there was a significant granulite fa-cies tectonothermal event in the northern Huangling anticline in the Paleoproterozoic, which may be related with tectonic thermal events of the metamorphism caused by the as-sembly of the Columbia supercontinent with South China. Moreover, the REE pattern ischaracterized by depletion in LREE while relatively flat in HREE, LaN/YbN=0.26, with a positive Eu anomaly (Eu/Eu^*---1.59), which reveals its hydrothermal sedimentation origin and it may have formed in the environment of submarine exhalation.
文摘Metamorphic xenoliths within the Nushan alkali basalt of northeastern Anhui (NEA),China ,are from the middle-lower crust.They could be divided into two end-members:basic and acid.Interme-diate xenoliths are scarcely found.Basic two-pyroxene granulites(pyriclasites) were formed at 720-810℃ and 7-8kb.Petrological and geochemical studies indicate that the primary magma of the protoliths of basic granulites was derived from the metasomatized upper mantle, while the pa-rental magma of the acid end-member was probably produced by partial melting of the basic rocks. The protoliths of charnockites and grey gneisses represent respectively the early and late crystallization products of the granitic magma.The Nushan granulites are much different in many aspects from the granulites exposed in the northern part of North China ,which implies the inhomogeneity regarding to the early evolution of the North China terranc.
基金supported by the National Natural Science Foundation of China (No. 41761144061)the Shandong Provincial Natural Science Foundation (No. ZR2016DM04)the University Students Innovation Program of SDUST (No. 2015TDJH101)
文摘The studied mafic granulites are located at Xiwangshan,Xuanhua region in the north of the Trans-North China Orogen(TNCO),occurring as lens within tonalite-trondhjemite-granodiorite(TTG)gneisses in the eastern part of the Xiwangshan area.The rocks contain the representative granulite-facies minerals such as garnet,clinopyroxene,orthopyroxene,plagioclase,amphibolite,rutile and quartz,and also well-developed melt pseudomorph and antiperthite.Although the prograde metamorphic stage(M1)cannot be retrieved due to rare preservation of pre-peak-stage mineral associations,three distinct mineral assemblages that formed in different metamorphic stages can be identified,based on petrography and mineralogy characteristics.The peak stage(M2)is characterized by Grt2+Cpx2+Amp2+Pl2+Rt+melt pseudomorphs,and a post-peak decompression stage(M3)contains a mineral assemblage of Grt3+Opx3+Cpx3+Amp3+Pl3,while a later-retrogression stage(M4)is featured by coronas of Amp4+Pl4 surrounding garnet.By calculating metamorphic P-T conditions using THERMOCALC,stage M2 was constrained to be 13.2–14.8 kbar and 1050–1080℃,and M3 recorded P-T conditions of 5.7–7.3 kbar and 825–875℃,while M4 yielded P of^5 kbar and T of^660℃,consistent with amphibolite facies metamorphism.Taking into account of all these petrological data,we propose that the mafic granulite experienced a high-pressure(HP)and ultra-high temperature(UHT)granulite-facies metamorphism during the peak metamorphism,which was accompanied with a clockwise P-T path.U-Pb dating of metamorphic zircons in the granulites yields two groups of ages at 1853±14 and 1744±44 Ma,respectively.We suggest that the older age corresponded to the HP-UHT metamorphism,while the younger age represented an retrograde metamorphic event during cooling.
基金This study was supported by the National Natural Science Foundation of China grants 49572146 and 49772147 and the Foundation for Development of Science and Technology in Geology grant 9514.
文摘: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks” of the Shima eclogite) in the Dabie Mountains. The study shows that these rocks have peak metamorphic ages of 443–455 Ma, which are essentially consistent with that of the Caledonian high—ultrahigh pressure eclogites. This indicates the existence of the Caledonian collisional orogeny in the Dabie Mountains.