In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superallo...In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.展开更多
Person re-identification(Re-ID)has achieved great progress in recent years.However,person Re-ID methods are still suffering from body part missing and occlusion problems,which makes the learned representations less re...Person re-identification(Re-ID)has achieved great progress in recent years.However,person Re-ID methods are still suffering from body part missing and occlusion problems,which makes the learned representations less reliable.In this paper,we pro⁃pose a robust coarse granularity part-level network(CGPN)for person Re-ID,which ex⁃tracts robust regional features and integrates supervised global features for pedestrian im⁃ages.CGPN gains two-fold benefit toward higher accuracy for person Re-ID.On one hand,CGPN learns to extract effective regional features for pedestrian images.On the other hand,compared with extracting global features directly by backbone network,CGPN learns to extract more accurate global features with a supervision strategy.The single mod⁃el trained on three Re-ID datasets achieves state-of-the-art performances.Especially on CUHK03,the most challenging Re-ID dataset,we obtain a top result of Rank-1/mean av⁃erage precision(mAP)=87.1%/83.6%without re-ranking.展开更多
Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integratio...Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.展开更多
Dynamic distribution model is one of the best schemes for parallel volume rendering. How- ever, in homogeneous cluster system.since the granularity is traditionally identical, all processors communicate almost simulta...Dynamic distribution model is one of the best schemes for parallel volume rendering. How- ever, in homogeneous cluster system.since the granularity is traditionally identical, all processors communicate almost simultaneously and computation load may lose balance. Due to problems above, a dynamic distribution model with prime granularity for parallel computing is presented. Granularities of each processor are relatively prime, and related theories are introduced. A high parallel performance can be achieved by minimizing network competition and using a load balancing strategy that ensures all processors finish almost simultaneously. Based on Master-Slave-Gleaner ( MSG) scheme, the parallel Splatting Algorithm for volume rendering is used to test the model on IBM Cluster 1350 system. The experimental results show that the model can bring a considerable improvement in performance, including computation efficiency, total execution time, speed, and load balancing.展开更多
This paper proposes an optimal solution to choose the number of enhancement layers in fine granularity scalability (FGS) scheme under the constraint of minimum transmission energy, in which FGS is combined with transm...This paper proposes an optimal solution to choose the number of enhancement layers in fine granularity scalability (FGS) scheme under the constraint of minimum transmission energy, in which FGS is combined with transmission energy control, so that FGS enhancement layer transmission energy is minimized while the distortion guaranteed. By changing the bit-plane level and packet loss rate, minimum transmission energy of enhancement layer is obtained, while the expected distortion is satisfied.展开更多
Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and...Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and deposit environments is discussed and the results show that the content of radioactive substances is related to the granularity and lithology in sediment, and it is higher in argillaceous sediment (e.g. silt and clay), lower in sand sediment and in the middle in gravels between the above two kinds of sediment. The content of radioactive substances is also related to paleoclimate. A warm and humid environment is propitious to the deposition of radioactive substances, while a cool and dry climate is just the reverse.展开更多
Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem ...Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem solution of complex system without depending on the domain of problem.It is robust to many kinds of problems.The paper combines Genetic Algorithms and rough sets theory to compute granular of knowledge through an example of information table. The combination enable us to compute granular of knowledge effectively.It is also useful for computer auto-computing and information processing.展开更多
In this paper, some important issues of granularity are discussed mainly in information systems (ISs) based on binary relation. Firstly, the vector representation method of knowledge granules is proposed in an infor-m...In this paper, some important issues of granularity are discussed mainly in information systems (ISs) based on binary relation. Firstly, the vector representation method of knowledge granules is proposed in an infor-mation system based on binary relation to eliminate limitations of set representation method. Secondly, operators among knowledge granularity are introduced and some important properties of them are studied carefully. Thirdly, distance between two knowledge granules is established and granular space is constructed based on it. Fourthly, axiomatic definition of knowledge granularity is investigated, and one can find that some existed knowledge granularities are special cases under the definition. In addition, as an application of knowledge granular space, an example is employed to validate some results in our work.展开更多
In this paper, we conduct research on the development trend and general applications of the fuzzy rough granular computing theory. Granular computing is a new concept of general information processing and computing pa...In this paper, we conduct research on the development trend and general applications of the fuzzy rough granular computing theory. Granular computing is a new concept of general information processing and computing paradigm which covers all the granularity the study of the theory, methods, techniques and the tools. In many areas are the basic ideas of granular computing, such as the interval analysis, rough set theory, clustering analysis and information retrieval, machine learning, database, etc. With the theory of domain known division of target concept and rule acquisition, in knowledge discovery, data mining and the pattern recognition is widely used. Under this basis, in this paper, we propose the fuzzy rough theory based computing paradigm that gains ideal performance.展开更多
Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agr...Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space technologies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the advanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and benchmark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude several promising lines of research in fine-grained visual parsing for future research.展开更多
Purpose:Three-way decision(3WD)and probabilistic rough sets(PRSs)are theoretical tools capable of simulating humans’multi-level and multi-perspective thinking modes in the field of decision-making.They are proposed t...Purpose:Three-way decision(3WD)and probabilistic rough sets(PRSs)are theoretical tools capable of simulating humans’multi-level and multi-perspective thinking modes in the field of decision-making.They are proposed to assist decision-makers in better managing incomplete or imprecise information under conditions of uncertainty or fuzziness.However,it is easy to cause decision losses and the personal thresholds of decision-makers cannot be taken into account.To solve this problem,this paper combines picture fuzzy(PF)multi-granularity(MG)with 3WD and establishes the notion of PF MG 3WD.Design/methodology/approach:An effective incomplete model based on PF MG 3WD is designed in this paper.First,the form of PF MG incomplete information systems(IISs)is established to reasonably record the uncertain information.On this basis,the PF conditional probability is established by using PF similarity relations,and the concept of adjustable PF MG PRSs is proposed by using the PF conditional probability to fuse data.Then,a comprehensive PF multi-attribute group decision-making(MAGDM)scheme is formed by the adjustable PF MG PRSs and the VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.Finally,an actual breast cancer data set is used to reveal the validity of the constructed method.Findings:The experimental results confirm the effectiveness of PF MG 3WD in predicting breast cancer.Compared with existing models,PF MG 3WD has better robustness and generalization performance.This is mainly due to the incomplete PF MG 3WD proposed in this paper,which effectively reduces the influence of unreasonable outliers and threshold settings.Originality/value:The model employs the VIKOR method for optimal granularity selections,which takes into account both group utility maximization and individual regret minimization,while incorporating decision-makers’subjective preferences as well.This ensures that the experiment maintains higher exclusion stability and reliability,enhancing the robustness of the decision results.展开更多
Green roofs play a vital role in promoting sustainable urban development and achieving carbon neutrality by enhancing carbon sequestration, oxygen release, and efficiency of land use. Despite these benefits, living ro...Green roofs play a vital role in promoting sustainable urban development and achieving carbon neutrality by enhancing carbon sequestration, oxygen release, and efficiency of land use. Despite these benefits, living roof coverage in China remains limited. To address the challenges in policy formulation, operational monitoring, and the absence of multi-scale retrofit strategies supported by robust assessment methods, this study develops a comprehensive evaluation framework. The framework integrates vector data, building age information, and point-of-interest(POI) data, and applies an optimized Prophet model to classify six major climate zones. This approach facilitates the selection of appropriate plant species and substrates while quantifying the potential for carbon sequestration and oxygen release. An assessment of 90 cities reveals approximately 1.3861 billion square meters of rooftop area suitable for green roof implementation, with an estimated annual carbon sequestration potential of 67.30 million tons and oxygen release of 30.36 million tons. Commercial buildings contribute significantly, comprising 65% of the total suitable area. Climate zones 2 and 3 exhibit the most favorable outcomes. The current study provides a reliable quantitative reference for evaluating the carbon sequestration and oxygen release capacities of green roofs and supports the formulation of effective retrofit policies.展开更多
In this study,the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities,sludge characteristics and microbial communities were investigated.The increas...In this study,the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities,sludge characteristics and microbial communities were investigated.The increase in salinity resulted in a decrease in particle size of the granular sludge,which was concentrated in the range of 0.5-1.0 mm.The content of EPS(extracellular polymeric substances)in the granular sludge gradually increased with increasing salinity and the addition of betaine(a typical compatible solute).Meanwhile,the microbial community structure was significantly affected by salinity,with high salinity reducing the diversity of bacteria.At higher salinity,Patescibacteria and Proteobacteria gradually became the dominant phylum,with relative abundance increasing to 13.53%and 12.16%at 20 g/L salinity.Desulfobacterota and its subordinate Desulfovibrio,which secrete EPS in large quantities,dominated significantly after betaine addition.Their relative abundance reached 13.65%and 7.86%at phylum level and genus level.The effect of these changes on the treated effluent was shown as the average chemical oxygen demand(COD)removal rate decreased from 82.10%to 79.71%,78.01%,68.51%and 64.55%when the salinity gradually increased from 2 g/L to 6,10,16 and 20 g/L.At the salinity of 20 g/L,average COD removal increased to 71.65%by the addition of 2 mmol/L betaine.The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment,which provided a feasible strategy for anaerobic treatment of organic saline wastewater.展开更多
Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established ...Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established by injecting subcutaneously with dehydroepiandrosterone into female Sprague-Dawley rats,followed by receiving intraperitoneal injection of TSG.The granular cells(GCs)KGN were transfected with small interfering RNAs(si-NC and si-CYP19A1).The cells were preincubated with lipopolysaccharide(LPS)and then treated with or without TSG.The estrous cycle was monitored using vaginal exfoliated cells.The morphology of ovarian follicles was analyzed by H&E staining.ELISA was used to analyze estradiol(E2),testosterone(T),follicle stimulating hormone(FSH),luteinizing hormone(LH),IL-6,TNF-α,AGEs,CRP and Omentin-1 levels in serum.Immunohistochemistry was performed to analyze PCNA and CYP19A1 expressions in the GCs of ovaries.Tunel staining was executed to detect the apoptosis of GCs.Quantitative polymerase chain reaction(qPCR)and Western blot were implemented to measure the expression of CYP19A1 in the ovaries and transfected cells.qPCR was used to analyze the expression of IL-6 and TNF-αin the transfected cells treated with LPS and TSG.Results The estrous cycles were restored in TSG group.Compared with model group,the sinus follicles were reduced and corpus luteums were increased in TSG group.TSG group showed increased E2,and decreased T and LH,compared with model group.Pro-inflammatory factors(IL-6,TNF-α,CRP and AGEs)were decreased,and anti-inflammatory factor(Omentin-1)was increased in TSG group compared with those in model group.TSG could partially inhibit decrease of PNCA-positive GCs and increase of Tunel-positive GCs caused by PCOS.The CYP19A1 expression of GCs in TSG group was upregulated compared with model group.The expressions of IL-6 and TNFαin si-CYP19A1 cells were increased compared with si-NC cells.Compared with cells(si-NC and si-CYP19A1)treated without LPS,the expressions of IL-6 and TNF-αcells were increased,and the expression of CYP19A1 was downregulated in LPS-preincubated cells.Compared with cells treated with LPS,the expression of IL-6 and TNF-αwere decreased,and the expression of CYP19A1 was increased in cells treated with LPS and TSG.Compared with si-NC cells treated with LPS and TSG,the expressions of IL-6 and TNF-αcells were increased in the si-CYP19A1 cells treated with LPS and TSG.Conclusion TSG could alleviate PCOS-like characteristics by increasing the expression of CYP19A1 in GCs to inhibit inflammatory response.展开更多
Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation....Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation. However, the performance of a parallel declarative program can be impaired by a mismatch between the parallelism available in an application and the parallelism available in the architecture. A particularly attractive solution is to automatically match the parallelism of the program to the parallelism of the target hardware as a compilation step. In this paper) we present an optimizillg compilation technique called granularity analysis which identi fies and removes excess parallelism that would degrade performance. The main steps are: an analysis of the flow of data to form an attributed call graph between function (or predicate) arguments; and an asymptotic estimation of granularity of a function (or predicate) to generate approximate grain size. Compiled procedure calls can be annotated with grain size and a task scheduler can make scheduling decisions with the classilication scheme of grains to control parallelism at runtime. The resulting granularity analysis scheme is suitable for exploiting adaptive parallelism of declarative programming languages on multiprocessors.展开更多
The combination of spatial distribution,semantic characteristics,and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics.Most previous studies on POI-based la...The combination of spatial distribution,semantic characteristics,and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics.Most previous studies on POI-based land use modeling research focused on one geographic region and select one spatial scale and semantic granularity for land use characterization.There is a lack of understanding on the impact of spatial scale,semantic granularity,and geographic context on POI-based land use modeling,particularly large-scale land use modeling.In this study,we developed a scalable POI-based land use modeling framework and examined the impact of these three factors on POI-based land use characterization using data from three geographic regions.We developed a unified semantic representation framework for POI semantics that can help fuse heterogeneous POI data sources.Then,by combining POIs with a neural network language model,we developed a spatially explicit approach to learn the embedding representation of POIs and AOIs.We trained multiple supervised classifiers using AOI embeddings as input features to predict AOI land use at different semantic granularities.The classification performance of different land use classes was analyzed and compared across three geographic regions to identify the semantic representativeness of POI-based AOI embedding and the impact of geographic context.展开更多
The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the a...The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus.It is demonstrated that the librational liquefaction of the granular material results in pattern formation.This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force.The inertial wave induces vortical fluid flow which entrains particles from rest and forms eroded areas that are equidistant from each other along the axis of rotation.Theoretical analysis and experiments demonstrate that a liquefied layer of granular material oscillates with a radian frequency equal to the angular velocity of the annulus and interacts with the inertial wave it excites.The new phenomenon of libration-induced pattern formation is of practical interest as it can be used to control multiphase flows and mass transfer in rotating containers in a variety of industrial processes.展开更多
The pandemic SARS-CoV-2 has become an undying virus to spread a sustainable disease named COVID-19 for upcoming few years.Mortality rates are rising rapidly as approved drugs are not yet available.Isolation from the i...The pandemic SARS-CoV-2 has become an undying virus to spread a sustainable disease named COVID-19 for upcoming few years.Mortality rates are rising rapidly as approved drugs are not yet available.Isolation from the infected person or community is the preferred choice to protect our health.Since humans are the only carriers,it might be possible to control the positive rate if the infected population or host carriers are isolated from each other.Isolation alone may not be a proper solution.These are the resolutions of previous research work carried out on COVID-19 throughout the world.The present scenario of the world and public health is knocking hard with a big question of critical uncertainty of COVID-19 because of its imprecise database as per daily positive cases recorded all over the world and in India as well.In this research work,we have pre-sented an optimal control model for COVID-19 using granular differentiability based on fuzzy dynamical systems.In the first step,we created a fuzzy Susceptible-Exposed-Infected-Asymptomatic-Hospitalized-Recovered-Death(SEIAHRD)model for COVID-19,analyzed it using granular differentiability,and reported disease dynamics for time-independent disease control parameters.In the second step,we upgraded the fuzzy dynamical system and granular differentiability model related to time-dependent disease control parameters as an optimal control problem invader.Theoretical studies have been validated with some practical data from the epidemic COVID-19 related to the Indian perspective during first wave and early second wave.展开更多
Based on the energy dissipation caused by consolidation deformation of the porous media under external force and migration of the internal suspended substances,a coupled multiphase-substance flow(CMF)model was establi...Based on the energy dissipation caused by consolidation deformation of the porous media under external force and migration of the internal suspended substances,a coupled multiphase-substance flow(CMF)model was established.This model introduced the new concepts,such as particle temperature and particle entropy,to describe energy dissipation at meso-level.This model used a potential energy density function and migration coefficients to establish the corresponding connection between the dissipative force and dissipative flow.This viewpoint unifies the deformation,seepage,and suspended substance migration of geotechnical materials under the framework of granular thermodynamics.It can reflect the evolution of effective stress in the solid matrix of multi-components in a particle-reorganized state,and considers the temperature driving effect.The proposed CMF model is validated using the experimental results under coupled migration of heavy metal ions(HMs)and suspended particles(SPs).The calculation results demonstrated that the CMF model can describe the flow process under the conditions of arbitrary changes in different suspended substance types,injection concentrations,and injection velocities.展开更多
In the deep geological disposal repository of high-level radioactive waste,buffer/backfill materials typically consist of compacted bentonite block and granular bentonite.As these materials undergo a long-term hydrati...In the deep geological disposal repository of high-level radioactive waste,buffer/backfill materials typically consist of compacted bentonite block and granular bentonite.As these materials undergo a long-term hydration,it is anticipated that the two forms of bentonite materials(i.e.compacted bentonite powder(CBP)and granular bentonite(GB))are expected to exhibit differing hydro-mechanical behaviors due to the differences in their structures.This work aims to investigate the differences in swelling pressure and compressibility through a series of swelling pressure tests,compression tests and mercury intrusion porosimetry(MIP)tests.The experimental results demonstrated that swelling pressure curves of the CBP specimens showed higher first peak values and more pronounced collapse than those of the GB specimens at a given dry density,regardless of vapor-water hydration or liquid-water hydration.The final swelling pressures of the two materials were similar at the same dry density,suggesting an independent correlation between swelling pressure and dry density.At the high suction range,the compression curves exhibited an obvious bi-linear pattern for the CBP specimens and a significant nonlinearity for the GB specimens.Meanwhile,the CBP specimens presented higher pre-consolidation pressures and larger compression indices than the GB specimens at a given suction.As suction decreased,the compression curves of the two materials gradually approached each other and their differences were reduced accordingly.After reaching saturation,a good consistency between them was observed whether for final swelling pressure or compressibility.Pore structure analysis revealed that the two materials both presented an initially double structure,and their differences were primarily manifested at the macrostructural level.Eventually,the differences in swelling pressure or compression curves of the two materials were well interpreted by combining microstructural evolutions.展开更多
文摘In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.
文摘Person re-identification(Re-ID)has achieved great progress in recent years.However,person Re-ID methods are still suffering from body part missing and occlusion problems,which makes the learned representations less reliable.In this paper,we pro⁃pose a robust coarse granularity part-level network(CGPN)for person Re-ID,which ex⁃tracts robust regional features and integrates supervised global features for pedestrian im⁃ages.CGPN gains two-fold benefit toward higher accuracy for person Re-ID.On one hand,CGPN learns to extract effective regional features for pedestrian images.On the other hand,compared with extracting global features directly by backbone network,CGPN learns to extract more accurate global features with a supervision strategy.The single mod⁃el trained on three Re-ID datasets achieves state-of-the-art performances.Especially on CUHK03,the most challenging Re-ID dataset,we obtain a top result of Rank-1/mean av⁃erage precision(mAP)=87.1%/83.6%without re-ranking.
基金the National Natural Science Foundation of China(No.60273048).
文摘Precise integration methods to solve structural dynamic responses and the corresponding time integration formula are composed of two parts: the multiplication of an exponential matrix with a vector and the integration term. The second term can be solved by the series solution. Two hybrid granularity parallel algorithms are designed, that is, the exponential matrix and the first term are computed by the fine-grained parallel algorithra and the second term is computed by the coarse-grained parallel algorithm. Numerical examples show that these two hybrid granularity parallel algorithms obtain higher speedup and parallel efficiency than two existing parallel algorithms.
基金Supported by Natural Science Foundation of China ( No. 60373061).
文摘Dynamic distribution model is one of the best schemes for parallel volume rendering. How- ever, in homogeneous cluster system.since the granularity is traditionally identical, all processors communicate almost simultaneously and computation load may lose balance. Due to problems above, a dynamic distribution model with prime granularity for parallel computing is presented. Granularities of each processor are relatively prime, and related theories are introduced. A high parallel performance can be achieved by minimizing network competition and using a load balancing strategy that ensures all processors finish almost simultaneously. Based on Master-Slave-Gleaner ( MSG) scheme, the parallel Splatting Algorithm for volume rendering is used to test the model on IBM Cluster 1350 system. The experimental results show that the model can bring a considerable improvement in performance, including computation efficiency, total execution time, speed, and load balancing.
文摘This paper proposes an optimal solution to choose the number of enhancement layers in fine granularity scalability (FGS) scheme under the constraint of minimum transmission energy, in which FGS is combined with transmission energy control, so that FGS enhancement layer transmission energy is minimized while the distortion guaranteed. By changing the bit-plane level and packet loss rate, minimum transmission energy of enhancement layer is obtained, while the expected distortion is satisfied.
基金This project was granted bythe National Developmentand Reform Commission.Item Number:20041138
文摘Based on the content of radioactive elements (U, Th, K) of strata in two drill holes in the Fuzhou basin, and combined with the result of spore_pollen analysis, the relationship between radioactivity and lithology and deposit environments is discussed and the results show that the content of radioactive substances is related to the granularity and lithology in sediment, and it is higher in argillaceous sediment (e.g. silt and clay), lower in sand sediment and in the middle in gravels between the above two kinds of sediment. The content of radioactive substances is also related to paleoclimate. A warm and humid environment is propitious to the deposition of radioactive substances, while a cool and dry climate is just the reverse.
文摘Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem solution of complex system without depending on the domain of problem.It is robust to many kinds of problems.The paper combines Genetic Algorithms and rough sets theory to compute granular of knowledge through an example of information table. The combination enable us to compute granular of knowledge effectively.It is also useful for computer auto-computing and information processing.
文摘In this paper, some important issues of granularity are discussed mainly in information systems (ISs) based on binary relation. Firstly, the vector representation method of knowledge granules is proposed in an infor-mation system based on binary relation to eliminate limitations of set representation method. Secondly, operators among knowledge granularity are introduced and some important properties of them are studied carefully. Thirdly, distance between two knowledge granules is established and granular space is constructed based on it. Fourthly, axiomatic definition of knowledge granularity is investigated, and one can find that some existed knowledge granularities are special cases under the definition. In addition, as an application of knowledge granular space, an example is employed to validate some results in our work.
文摘In this paper, we conduct research on the development trend and general applications of the fuzzy rough granular computing theory. Granular computing is a new concept of general information processing and computing paradigm which covers all the granularity the study of the theory, methods, techniques and the tools. In many areas are the basic ideas of granular computing, such as the interval analysis, rough set theory, clustering analysis and information retrieval, machine learning, database, etc. With the theory of domain known division of target concept and rule acquisition, in knowledge discovery, data mining and the pattern recognition is widely used. Under this basis, in this paper, we propose the fuzzy rough theory based computing paradigm that gains ideal performance.
基金supported in part by National Natural Science Foundation of China(Nos.62132002,61825101 and 62202010)the Key-Area Research and Development Program of Guangdong Province,China(No.2021B0101400002)the China Postdoctoral Science Foundation(No.2022M710212).
文摘Fine-grained visual parsing, including fine-grained part segmentation and fine-grained object recognition, has attracted considerable critical attention due to its importance in many real-world applications, e.g., agriculture, remote sensing, and space technologies. Predominant research efforts tackle these fine-grained sub-tasks following different paradigms, while the inherent relations between these tasks are neglected. Moreover, given most of the research remains fragmented, we conduct an in-depth study of the advanced work from a new perspective of learning the part relationship. In this perspective, we first consolidate recent research and benchmark syntheses with new taxonomies. Based on this consolidation, we revisit the universal challenges in fine-grained part segmentation and recognition tasks and propose new solutions by part relationship learning for these important challenges. Furthermore, we conclude several promising lines of research in fine-grained visual parsing for future research.
基金funded by the National Natural Science Foundation of China(Nos:62272284,61972238 and 62072294)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No:202204051001015)the Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(CSREP)(No:2019SK036)。
文摘Purpose:Three-way decision(3WD)and probabilistic rough sets(PRSs)are theoretical tools capable of simulating humans’multi-level and multi-perspective thinking modes in the field of decision-making.They are proposed to assist decision-makers in better managing incomplete or imprecise information under conditions of uncertainty or fuzziness.However,it is easy to cause decision losses and the personal thresholds of decision-makers cannot be taken into account.To solve this problem,this paper combines picture fuzzy(PF)multi-granularity(MG)with 3WD and establishes the notion of PF MG 3WD.Design/methodology/approach:An effective incomplete model based on PF MG 3WD is designed in this paper.First,the form of PF MG incomplete information systems(IISs)is established to reasonably record the uncertain information.On this basis,the PF conditional probability is established by using PF similarity relations,and the concept of adjustable PF MG PRSs is proposed by using the PF conditional probability to fuse data.Then,a comprehensive PF multi-attribute group decision-making(MAGDM)scheme is formed by the adjustable PF MG PRSs and the VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.Finally,an actual breast cancer data set is used to reveal the validity of the constructed method.Findings:The experimental results confirm the effectiveness of PF MG 3WD in predicting breast cancer.Compared with existing models,PF MG 3WD has better robustness and generalization performance.This is mainly due to the incomplete PF MG 3WD proposed in this paper,which effectively reduces the influence of unreasonable outliers and threshold settings.Originality/value:The model employs the VIKOR method for optimal granularity selections,which takes into account both group utility maximization and individual regret minimization,while incorporating decision-makers’subjective preferences as well.This ensures that the experiment maintains higher exclusion stability and reliability,enhancing the robustness of the decision results.
文摘Green roofs play a vital role in promoting sustainable urban development and achieving carbon neutrality by enhancing carbon sequestration, oxygen release, and efficiency of land use. Despite these benefits, living roof coverage in China remains limited. To address the challenges in policy formulation, operational monitoring, and the absence of multi-scale retrofit strategies supported by robust assessment methods, this study develops a comprehensive evaluation framework. The framework integrates vector data, building age information, and point-of-interest(POI) data, and applies an optimized Prophet model to classify six major climate zones. This approach facilitates the selection of appropriate plant species and substrates while quantifying the potential for carbon sequestration and oxygen release. An assessment of 90 cities reveals approximately 1.3861 billion square meters of rooftop area suitable for green roof implementation, with an estimated annual carbon sequestration potential of 67.30 million tons and oxygen release of 30.36 million tons. Commercial buildings contribute significantly, comprising 65% of the total suitable area. Climate zones 2 and 3 exhibit the most favorable outcomes. The current study provides a reliable quantitative reference for evaluating the carbon sequestration and oxygen release capacities of green roofs and supports the formulation of effective retrofit policies.
基金supported by the Guangdong Special Support ProgramProject(No.2021JC060580)the Foshan Innovation Team Project(No.2130218003140).
文摘In this study,the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities,sludge characteristics and microbial communities were investigated.The increase in salinity resulted in a decrease in particle size of the granular sludge,which was concentrated in the range of 0.5-1.0 mm.The content of EPS(extracellular polymeric substances)in the granular sludge gradually increased with increasing salinity and the addition of betaine(a typical compatible solute).Meanwhile,the microbial community structure was significantly affected by salinity,with high salinity reducing the diversity of bacteria.At higher salinity,Patescibacteria and Proteobacteria gradually became the dominant phylum,with relative abundance increasing to 13.53%and 12.16%at 20 g/L salinity.Desulfobacterota and its subordinate Desulfovibrio,which secrete EPS in large quantities,dominated significantly after betaine addition.Their relative abundance reached 13.65%and 7.86%at phylum level and genus level.The effect of these changes on the treated effluent was shown as the average chemical oxygen demand(COD)removal rate decreased from 82.10%to 79.71%,78.01%,68.51%and 64.55%when the salinity gradually increased from 2 g/L to 6,10,16 and 20 g/L.At the salinity of 20 g/L,average COD removal increased to 71.65%by the addition of 2 mmol/L betaine.The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment,which provided a feasible strategy for anaerobic treatment of organic saline wastewater.
文摘Objective To investigate whether 2,3,5,4'-tetrahydroxystilbene-2-O-β-glucoside(TSG)ameliorated polycystic ovary syndrome(PCOS)-like characteristics by inhibiting inflammation.Methods PCOS models were established by injecting subcutaneously with dehydroepiandrosterone into female Sprague-Dawley rats,followed by receiving intraperitoneal injection of TSG.The granular cells(GCs)KGN were transfected with small interfering RNAs(si-NC and si-CYP19A1).The cells were preincubated with lipopolysaccharide(LPS)and then treated with or without TSG.The estrous cycle was monitored using vaginal exfoliated cells.The morphology of ovarian follicles was analyzed by H&E staining.ELISA was used to analyze estradiol(E2),testosterone(T),follicle stimulating hormone(FSH),luteinizing hormone(LH),IL-6,TNF-α,AGEs,CRP and Omentin-1 levels in serum.Immunohistochemistry was performed to analyze PCNA and CYP19A1 expressions in the GCs of ovaries.Tunel staining was executed to detect the apoptosis of GCs.Quantitative polymerase chain reaction(qPCR)and Western blot were implemented to measure the expression of CYP19A1 in the ovaries and transfected cells.qPCR was used to analyze the expression of IL-6 and TNF-αin the transfected cells treated with LPS and TSG.Results The estrous cycles were restored in TSG group.Compared with model group,the sinus follicles were reduced and corpus luteums were increased in TSG group.TSG group showed increased E2,and decreased T and LH,compared with model group.Pro-inflammatory factors(IL-6,TNF-α,CRP and AGEs)were decreased,and anti-inflammatory factor(Omentin-1)was increased in TSG group compared with those in model group.TSG could partially inhibit decrease of PNCA-positive GCs and increase of Tunel-positive GCs caused by PCOS.The CYP19A1 expression of GCs in TSG group was upregulated compared with model group.The expressions of IL-6 and TNFαin si-CYP19A1 cells were increased compared with si-NC cells.Compared with cells(si-NC and si-CYP19A1)treated without LPS,the expressions of IL-6 and TNF-αcells were increased,and the expression of CYP19A1 was downregulated in LPS-preincubated cells.Compared with cells treated with LPS,the expression of IL-6 and TNF-αwere decreased,and the expression of CYP19A1 was increased in cells treated with LPS and TSG.Compared with si-NC cells treated with LPS and TSG,the expressions of IL-6 and TNF-αcells were increased in the si-CYP19A1 cells treated with LPS and TSG.Conclusion TSG could alleviate PCOS-like characteristics by increasing the expression of CYP19A1 in GCs to inhibit inflammatory response.
文摘Declarative Programming Languages (DPLs) apply a process model of Horn claun es such as PARLOG[8] or a reduction model of A-calculus such as SML[7] and are) in principle, well suited to multiprocessor implemelltation. However, the performance of a parallel declarative program can be impaired by a mismatch between the parallelism available in an application and the parallelism available in the architecture. A particularly attractive solution is to automatically match the parallelism of the program to the parallelism of the target hardware as a compilation step. In this paper) we present an optimizillg compilation technique called granularity analysis which identi fies and removes excess parallelism that would degrade performance. The main steps are: an analysis of the flow of data to form an attributed call graph between function (or predicate) arguments; and an asymptotic estimation of granularity of a function (or predicate) to generate approximate grain size. Compiled procedure calls can be annotated with grain size and a task scheduler can make scheduling decisions with the classilication scheme of grains to control parallelism at runtime. The resulting granularity analysis scheme is suitable for exploiting adaptive parallelism of declarative programming languages on multiprocessors.
文摘The combination of spatial distribution,semantic characteristics,and sometimes temporal dynamics of POIs inside a geographic region can capture its unique land use characteristics.Most previous studies on POI-based land use modeling research focused on one geographic region and select one spatial scale and semantic granularity for land use characterization.There is a lack of understanding on the impact of spatial scale,semantic granularity,and geographic context on POI-based land use modeling,particularly large-scale land use modeling.In this study,we developed a scalable POI-based land use modeling framework and examined the impact of these three factors on POI-based land use characterization using data from three geographic regions.We developed a unified semantic representation framework for POI semantics that can help fuse heterogeneous POI data sources.Then,by combining POIs with a neural network language model,we developed a spatially explicit approach to learn the embedding representation of POIs and AOIs.We trained multiple supervised classifiers using AOI embeddings as input features to predict AOI land use at different semantic granularities.The classification performance of different land use classes was analyzed and compared across three geographic regions to identify the semantic representativeness of POI-based AOI embedding and the impact of geographic context.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus.It is demonstrated that the librational liquefaction of the granular material results in pattern formation.This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force.The inertial wave induces vortical fluid flow which entrains particles from rest and forms eroded areas that are equidistant from each other along the axis of rotation.Theoretical analysis and experiments demonstrate that a liquefied layer of granular material oscillates with a radian frequency equal to the angular velocity of the annulus and interacts with the inertial wave it excites.The new phenomenon of libration-induced pattern formation is of practical interest as it can be used to control multiphase flows and mass transfer in rotating containers in a variety of industrial processes.
文摘The pandemic SARS-CoV-2 has become an undying virus to spread a sustainable disease named COVID-19 for upcoming few years.Mortality rates are rising rapidly as approved drugs are not yet available.Isolation from the infected person or community is the preferred choice to protect our health.Since humans are the only carriers,it might be possible to control the positive rate if the infected population or host carriers are isolated from each other.Isolation alone may not be a proper solution.These are the resolutions of previous research work carried out on COVID-19 throughout the world.The present scenario of the world and public health is knocking hard with a big question of critical uncertainty of COVID-19 because of its imprecise database as per daily positive cases recorded all over the world and in India as well.In this research work,we have pre-sented an optimal control model for COVID-19 using granular differentiability based on fuzzy dynamical systems.In the first step,we created a fuzzy Susceptible-Exposed-Infected-Asymptomatic-Hospitalized-Recovered-Death(SEIAHRD)model for COVID-19,analyzed it using granular differentiability,and reported disease dynamics for time-independent disease control parameters.In the second step,we upgraded the fuzzy dynamical system and granular differentiability model related to time-dependent disease control parameters as an optimal control problem invader.Theoretical studies have been validated with some practical data from the epidemic COVID-19 related to the Indian perspective during first wave and early second wave.
基金supported by the National Natural Science Foundation of China(Grant Nos.52378321 and 52079003).
文摘Based on the energy dissipation caused by consolidation deformation of the porous media under external force and migration of the internal suspended substances,a coupled multiphase-substance flow(CMF)model was established.This model introduced the new concepts,such as particle temperature and particle entropy,to describe energy dissipation at meso-level.This model used a potential energy density function and migration coefficients to establish the corresponding connection between the dissipative force and dissipative flow.This viewpoint unifies the deformation,seepage,and suspended substance migration of geotechnical materials under the framework of granular thermodynamics.It can reflect the evolution of effective stress in the solid matrix of multi-components in a particle-reorganized state,and considers the temperature driving effect.The proposed CMF model is validated using the experimental results under coupled migration of heavy metal ions(HMs)and suspended particles(SPs).The calculation results demonstrated that the CMF model can describe the flow process under the conditions of arbitrary changes in different suspended substance types,injection concentrations,and injection velocities.
基金funded by the National Natural Science Foundation of China(Grant Nos.42207227)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ40586)The authors also thank the China Postdoctoral Science Foundation(Grant Nos.2022M722428).
文摘In the deep geological disposal repository of high-level radioactive waste,buffer/backfill materials typically consist of compacted bentonite block and granular bentonite.As these materials undergo a long-term hydration,it is anticipated that the two forms of bentonite materials(i.e.compacted bentonite powder(CBP)and granular bentonite(GB))are expected to exhibit differing hydro-mechanical behaviors due to the differences in their structures.This work aims to investigate the differences in swelling pressure and compressibility through a series of swelling pressure tests,compression tests and mercury intrusion porosimetry(MIP)tests.The experimental results demonstrated that swelling pressure curves of the CBP specimens showed higher first peak values and more pronounced collapse than those of the GB specimens at a given dry density,regardless of vapor-water hydration or liquid-water hydration.The final swelling pressures of the two materials were similar at the same dry density,suggesting an independent correlation between swelling pressure and dry density.At the high suction range,the compression curves exhibited an obvious bi-linear pattern for the CBP specimens and a significant nonlinearity for the GB specimens.Meanwhile,the CBP specimens presented higher pre-consolidation pressures and larger compression indices than the GB specimens at a given suction.As suction decreased,the compression curves of the two materials gradually approached each other and their differences were reduced accordingly.After reaching saturation,a good consistency between them was observed whether for final swelling pressure or compressibility.Pore structure analysis revealed that the two materials both presented an initially double structure,and their differences were primarily manifested at the macrostructural level.Eventually,the differences in swelling pressure or compression curves of the two materials were well interpreted by combining microstructural evolutions.