为了实现支持向量回归算法的高效性和鲁棒性,本文将多粒度粒球计算融合到支持向量回归算法中,提出了一种基于粒球计算的多粒度粒球支持向量回归算法。该算法将粒球中的半径信息加入到约束条件中,将原本基于样本点的支持向量算法替换为...为了实现支持向量回归算法的高效性和鲁棒性,本文将多粒度粒球计算融合到支持向量回归算法中,提出了一种基于粒球计算的多粒度粒球支持向量回归算法。该算法将粒球中的半径信息加入到约束条件中,将原本基于样本点的支持向量算法替换为基于粒球的支持向量回归算法。同时,本文研究了多粒度粒球支持向量回归机的对偶模型。实验结果表明,采用人工数据集和加州大学欧文分校(University of California-Irvine,UCI)公开数据集时,多粒度粒球支持向量回归机的计算效率和鲁棒性均得到提升。展开更多
粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布...粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.展开更多
粒度支持向量机(Granular Support Vector Machine,GSVM)通过选取粒的代表点构成精简训练集以提高支持向量机(Support Vector Machine,SVM)的学习效率,然而选取个别代表点有可能丢失部分重要分类信息,导致模型泛化能力不高.针对这一问题...粒度支持向量机(Granular Support Vector Machine,GSVM)通过选取粒的代表点构成精简训练集以提高支持向量机(Support Vector Machine,SVM)的学习效率,然而选取个别代表点有可能丢失部分重要分类信息,导致模型泛化能力不高.针对这一问题,提出基于粒分布的GSVM(Distribution Based GSVM,DGSVM)加速训练方法,该方法依照粒内正负样本分布选取粒代表点,根据粒的混合度将这些代表点分为精简训练样本集和修正集,使用精简训练样本集训练得到分类器,用修正集迭代优化分类器.本质上DGSVM是用少量难分的样本训练快速得到初始分类器,然后再进行进一步调整.在标准数据集上的实验结果表明DGSVM方法可以在保证算法学习效率的同时提高分类器的泛化能力.展开更多
分类学习效果与有限训练样本的分布情况密切相关。支持向量数据描述(Support vector data description,SVDD)作为单一边界求解模型,不能良好刻画数据实际分布特征,从而导致部分目标对象落在超球以外。为了提高其分类能力,本文提出一种...分类学习效果与有限训练样本的分布情况密切相关。支持向量数据描述(Support vector data description,SVDD)作为单一边界求解模型,不能良好刻画数据实际分布特征,从而导致部分目标对象落在超球以外。为了提高其分类能力,本文提出一种基于粒计算的支持向量数据描述(Granular computing-driven SVDD,GrC-SVDD)分类方法,构造多粒度层次的属性集合以及相应的多粒度超球。首先通过邻域自信息对当前粒度层的属性集合重要度进行计算,然后选择最佳属性集合对上一粒度层未达到纯度阈值的超球再训练,直到所有超球满足条件或者属性耗尽。实验部分讨论了算法参数对分类性能的影响,并通过学习获得超参数。结果表明,与SVDD及流行的分类算法相比,本文方法具有较好的分类性能。展开更多
文摘为了实现支持向量回归算法的高效性和鲁棒性,本文将多粒度粒球计算融合到支持向量回归算法中,提出了一种基于粒球计算的多粒度粒球支持向量回归算法。该算法将粒球中的半径信息加入到约束条件中,将原本基于样本点的支持向量算法替换为基于粒球的支持向量回归算法。同时,本文研究了多粒度粒球支持向量回归机的对偶模型。实验结果表明,采用人工数据集和加州大学欧文分校(University of California-Irvine,UCI)公开数据集时,多粒度粒球支持向量回归机的计算效率和鲁棒性均得到提升。
文摘粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.
文摘粒度支持向量机(Granular Support Vector Machine,GSVM)通过选取粒的代表点构成精简训练集以提高支持向量机(Support Vector Machine,SVM)的学习效率,然而选取个别代表点有可能丢失部分重要分类信息,导致模型泛化能力不高.针对这一问题,提出基于粒分布的GSVM(Distribution Based GSVM,DGSVM)加速训练方法,该方法依照粒内正负样本分布选取粒代表点,根据粒的混合度将这些代表点分为精简训练样本集和修正集,使用精简训练样本集训练得到分类器,用修正集迭代优化分类器.本质上DGSVM是用少量难分的样本训练快速得到初始分类器,然后再进行进一步调整.在标准数据集上的实验结果表明DGSVM方法可以在保证算法学习效率的同时提高分类器的泛化能力.