Granite origin is crucial to understanding the evolution of continental crust,yet many concerns about granite genesis remain yielding ongoing debates.A new integrated study of petrology,geochronology,mineral chemistry...Granite origin is crucial to understanding the evolution of continental crust,yet many concerns about granite genesis remain yielding ongoing debates.A new integrated study of petrology,geochronology,mineral chemistry and whole-rock geochemistry of the Dupangling granitic complex in South China,indicate that the granites in the western complex were emplaced during the Caledonian(418 Ma);they have SiO_(2)contents of 68.1-70.4 wt%,and are calc-alkaline and strongly peraluminous with high maficity[(TFe_(2)O_(3)+MgO)>4.0 wt%]and exhibit^(87)Sr/^(86)Sr(t)of 0.7234-0.7311 andε_(Nd)(t)of-9.0 to-6.7.The granites in the eastern complex,emplaced during the Indosinian(212 Ma),have high SiO_(2)contents(73.3-79.8 wt%)and exhibit affinities with A-type granites,such as enrichment in alkalis and rare earth elements(REEs),and depletion in Sr and Ba along with high TFeO/(TFeO+MgO),Ga/Al and Zr+Y+Ce+Nb;these granites exhibit^(87)Sr/^(86)Sr(t)of 0.7221 andε_(Nd)(t)of-9.2 to-7.5.Geochemical characteristics suggest that the older Caledonian granites were derived through dehydration melting of Paleoproterozoic metasedimentary rocks plus additional(~20%-32%)input from mafic magma,whereas the Indosinian granites were generated through shallow dehydration melting of the Caledonian granitoids.展开更多
A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe...A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe granites consist of monzogranite and leucogranite.Zircon U-Pb dating shows that the emplacement ages of the monzogranite and leucogranite are 502.0 Ma and 500.9 Ma,respectively.All samples have high SiO_(2) content and a weakly to strongly peraluminous character(A/CNK=1.08-1.23),consistent with S-type granites.The monzogranite has relatively high CaO,Sr,Ba,and CaO/Na_(2)O ratios but lower Rb.In contrast,the leucogranite has lower CaO,Sr,Ba,and CaO/Na_(2)O ratios but higher Rb.The similar ε_(Nd)(t)values(−9.3 to−8.4)and Pb isotopic compositions((^(206)Pb/^(204)Pb)t=18.03-19.36,(^(207)Pb/^(204)Pb)t=15.66-15.76,(^(208)Pb/^(204)Pb)t=37.97-38.55)suggest that the monzogranite formed through partial melting of crustal greywacke,while the leucogranite originated from partial melting of crustal pelite.Regional geological studies suggest that these S-type granites in Pinghe were emplaced in an active continental margin setting,associated with the westward subduction of the proto-Tethys oceanic slab.The geochemical characteristics of leucogranite are consistent with those of tungsten-tin-related granites,indicating significant metallogenic potential for W and Sn deposits.展开更多
The Tong’an-Baishuidong mining district(TBMD),located in the eastern section of the Jiangnan Orogen,is a newly discovered granite-type lithium mining district.Thisstudy presents new monazite U-Pb chronological,whole-...The Tong’an-Baishuidong mining district(TBMD),located in the eastern section of the Jiangnan Orogen,is a newly discovered granite-type lithium mining district.Thisstudy presents new monazite U-Pb chronological,whole-rock geochemical,and Nd-Pb isotopic data to reveal the petrogenesis and geodynamic setting of the Wutang granites in the TBMD.The monazite U-Pb age of 145.8±1.0 Ma indicates that the granites were emplaced at the end of the Late Jurassic.Whole-rock geochemical results demonstrate that the Wutang granites are enriched in SiO_(2)(72.80-73.40 wt%)but depleted in CaO(0.44-0.90 wt%)and MgO+TiO_(2)+TFeO(1.79-2.05 wt%).These granites exhibit negative Eu anomalies(δEu=0.3−0.4)and high aluminum saturation indexes(A/CNK=1.2−1.6),differentiation indexes(DI=90-92),and Rb/Sr ratios(4.7-8.1).They also have moderate Ba contents(239-278 ppm)and low Sr contents(52.7-82.0 ppm)as well as low Nb/Ta(2.2-5.3)and Zr/Hf(21.3-31.5)ratios.All these indicate that they are highly fractionated granites.Additionally,these granites contain 5-10 wt%muscovite but no hornblende,with calculated corundum contents of 2.3-5.5 wt%.They have low high-field strength element(HFSE)contents(Zr+Nb+Ce+Y=182-202 ppm)and zircon saturation temperatures(700-770℃),with Th and Y negatively linked with Rb.These petrographic and geochemi-cal features further reveal that the Wutang granites belong to highly fractionated S-type granites.TheεNd(t)values of these granites range from−9.03 to−8.23,corresponding to two-stage model ages(T DM2)of 1488-1553 Ma.The initial Pb isotope ratios are:(206 Pb/^(204)Pb)i=18.38-18.55,(^(207)Pb/^(204)Pb)i=15.67-15.68,and(^(208)Pb/^(204)Pb)i=38.62-38.67.These Nd-Pb isotopic results demonstrate that the parental magma originated from the partial melting of ancient crustal materials.In the meantime,the TBMD in the eastern section of the Jiangnan Orogen was in a compression-extension transitional setting associated with the episodic subduction of the Paleo-Pacific Plate.展开更多
The petrogenesis and genetic link to polymetallic mineralization of the granites in the Dayishan complex,southern Hunan province remain debated.Here,we present an integrated study on the petrology,zircon U-Pb ages and...The petrogenesis and genetic link to polymetallic mineralization of the granites in the Dayishan complex,southern Hunan province remain debated.Here,we present an integrated study on the petrology,zircon U-Pb ages and whole-rock geochemistry for this complex.Our findings indicate that the southern complex consists of(amphibole-bearing)biotite granites and muscovite granites emplaced at 153-151 Ma,and the central and northern complex consists of two-mica granites and tourmaline-bearing muscovite granites,respectively with the former emplaced at 164 Ma and the latter at 150 Ma.The(amphibole-bearing)biotite granites have SiO_(2) contents of 68.0-73.8 wt% and are enriched in alkalis and rare earth elements and depleted in Sr and Ba.They display Zr+Y+Ce+Nb>350 ppm and 10000×Ga/Al>2.6 along with high zircon saturation temperatures(821-883oC).The two-mica granites and(tourmaline-bearing)muscovite granites have high SiO_(2)(74.4-77.3 wt%)and low Ga/Al,Zr+Nb+Ce+Y,K/Rb,Zr/Hf,and Nb/Ta along with low zircon saturation temperatures(709-817℃).Geochemical characteristics suggest that the(amphibole-bearing)biotite granites are A-type granites generated through shallow dehydration melting of early Paleozoic granitoids,and that the two-mica granites and(tourmaline-bearing)muscovite granites are fractionated A-type granites produced through fractionation crystallization from the(amphibole-bearing)biotite granites accompanied by fluid fractionation.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline a...Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline and bulkrock chemistry of multi-phase Wangxianling granitoids,South China.Compositional variations suggest the coarse-grained muscovite granite is produced from fractional crystallization of the two-mica granite whereas the fine-grained muscovite granite represents a distinct magma pulse.Progressive fractionation of quartz,feldspar and biotite leads to elevated boron and aluminum content in melt which promoted muscovite and tourmaline to crystallize,which promotes two-mica granite evolving towards tourmaline-bearing muscovite granite.Fluid-melt-crystal interaction occurred at the magmatichydrothermal transitional stage and resulted in the textural and chemical zonings of tourmaline and muscovite in finegrained muscovite granite.The rims of both tourmaline and muscovite are characterized by the enrichment of fluid mobile elements such as Li,Mn,Cs and Zn and heavierδ^(11)B values of the tourmaline rims(-15.0‰to-13.6‰)compared to cores(-15.7‰to-14.3‰).Meanwhile,significant M-type REE tetrad effects(TE_(1,3)=1.07-1.18)and low K/Rb ratios(48-52)also correspond to fluid-melt-crystal interaction.This study shows zoned muscovite and tourmaline can be excellent tracers of fractional crystallization and late-stage fluid-melt-crystal interaction in highly evolved magmatic systems.展开更多
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re...Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.Thi...The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.This study aims to elucidate the processes that have shaped the intrusion in both macroscopic and microscopic perspectives,employing a combination of field observation and petrographic analysis alongside major and trace element compositions of minerals.Within the central region of the pluton,biotite and amphibole are observed sporadically,while the predominant crystallization of anhydrous oligoclase in the outer regions has led to a progressive increase in volatile components within the residual melt,ultimately resulting in a volatile-saturated aluminosilicate melt.The exsolved fluids subsequently interacted with the previously crystallized mineral assemblage,producing metasomatic overprinting.As the cooling and crystallization continued,the water pressure within the magma chamber gradually escalated until it equaled or surpassed the confining pressure,leading to the formation of fractures and veins filled with minerals that crystallized from the residual aqueous fluids.The ongoing degassing and expulsion of aqueous fluids from the magma chamber’s interior ultimately contributed to the collapse of the chamber’s roof,resulting in the annular ring-dike morphology observed in the Homrit Waggat pluton.展开更多
The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic b...The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic backgrounds,rock types and genesis of the parent rocks related to the Early-Middle Jurassic ionic rare earth mineralization,typical deposits at Muzishan,Xiahu,and Zudong were investigated by conducting petrographic,geochronologic,whole-rock geochemical,and Sr-Nd-Pb isotope analyses,which found that the parent rocks from the Muzishan deposit were the A1-type K-feldspar granite(~195 Ma),from the Zudong deposit were the A2-type monzogranite(~171 Ma),and from the Xiahu deposit were the I-type monzogranite(~167 Ma).All the three granitic rocks underwent different degrees of fractionation,with the Xiahu granite experiencing the highest degree,followed by the Zudong granite,and the Muzishan granite undergoing the lowest degree.The Muzishan granite was concluded to be formed under an intraplate extensional tectonic regime influenced by the hotspots or the mantle plume.The Zudong granite was formed in a post-arc extensional setting related to subduction-collision-rollback of the paleo-Pacific Plate,which caused upwelling of the asthenosphere,thinning of the lithosphere,and partial melting of crustal materials.The Xiahu granite was generated under a transitional tectonic setting of extension and compression,triggered by delamination and rollback of the paleo-Pacific Plate.展开更多
Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect t...Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.展开更多
The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains e...The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.展开更多
The Shuangjianzishan deposit is a typical magmatic-hydrothermal deposit located in the southern Great Xing'an Range.Recent investigations have identified significant copper and tin mineralization at depth within t...The Shuangjianzishan deposit is a typical magmatic-hydrothermal deposit located in the southern Great Xing'an Range.Recent investigations have identified significant copper and tin mineralization at depth within the Shuangjianzishan deposit;however,the coupling relationship between magmatic emplacement and mineralization processes remains debated.This study presents whole-rock geochemistry,zircon LA-ICP-MS U-Pb dating,and zircon Hf isotope analyses of granite from the northern Shuangjianzishan deposit.The analysis results indicate the granite crystallized between 252.3 and 257.9 Ma,corresponding to Late Permian magmatic activity.The granite displaysε_(Hf)(t)=5.95-14.87,and t_(DM2)=333-900 Ma.Geochemically,the granite is rich in Si and Al,with high K,classified as a calc-alkaline,weakly peraluminous rock.LREEs are enriched,while HREEs are depleted,and a slight negative Eu anomaly,all of which are consistent with A-type granite characteristics.The Hercynian granite in the Shuangjianzishan deposit formed during the latter or post-collisional stages of the collision orogeny following the closure of the Paleo-Asian Ocean in the late Paleozoic era.The material source indicates a mixed origin,involving both crust and mantle contributions.The granite is also enriched in Cu,Pb,and Zn,suggesting its potential role as an ore-forming material source for the Shuangjianzishan deposit.This study proposes a potential link between Hercynian magmatism and mineralization at the Shuangjianzishan deposit for the first time,suggesting that multistage metallogenesis may be a response to successive magmatic events from Hercynian to Yanshanian periods in the mining area.展开更多
There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic ac...There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic activity during the Triassic and its dynamic mechanisms.However,research on the detailed chronology and tectonic settings of granite plutons in key regions remains insuffi-cient,limiting the understanding of the tectonic-magmatic dynamic mechanisms in the interior of SCB during the Triassic.In this contribution,we present whole-rock major and trace elemental data,Sr-Nd isotope data,LA-ICP-MS zircon U-Pb age dating,and Lu-Hf isotope data for granites of Dashenshan pluton in the Xiangzhong,northwest part of SCB.The results indicate that the Dashenshan granite has an emplacement age of 208.4-212.5 Ma,characterized by high SiO_(2),Na_(2)O,and K_(2)O contents and low MgO and CaO.The Dashenshan granite is enriched in light rare-earth elements with a significant negative Eu anomaly(averageδEu=0.42).It is also enriched in Rb,K,and Th and shows pronounced depletion in Nb,Ta,and Ti,classifying it as peraluminous calc-alkaline granite,specifically of the I-type.The zircon ε_(Hf(t)) values range from−8.39 to−4.4,with an average of−5.82,and the Sr-Nd isotopes are relatively enriched[ε_(Nd)(t)=−9.31 to−6.8].Combining these geochemical characteristics,it is revealed that the Dashenshan granite was derived from the partial melting of middle to upper crustal metamorphic basement materials under medium-to low-temperature conditions,with possible minor contributions from mantle-derived materials.Furthermore,it underwent fractional crystallization,including plagioclase differentiation.By integrating the geochemical features and spatial distribution of Triassic granites in SCB,this study suggests that the regional tectonic evolution of SCB during the Triassic was primarily controlled by the collision of the SCB with the Indochina Block and the North China Block.In Xiangzhong,the tectonic setting transitioned from syn-collisional compression to post-collisional extension during the Late Triassic.The Dashenshan pluton formed in a post-collisional extensional setting,resulting from the decompression melting of middle-to-upper crustal rocks.The upwelling of the asthenosphere and upward heat transfer likely played a significant role in the formation of the Dashenshan granitic magma.展开更多
The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive pha...The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive phases of the Suzhou granite,whole-rock geochemistry,geochemistry and U-Th-Pb dating of monazite was analyzed.The unique geochemical characteristics show that the Suzhou pluton can be discriminated as an A-type granite.LA-ICP-MS U-Th-Pb dating of monazite in both the medium-and coarse-grained biotite granite(MBG)and the fine-grained biotite granite(FBG)indicates that the granite formed between 124 and 127 Ma.Based on geochemical characteristics and mineral textures,the MBG(Mnz-Ia)and FBG(Mnz-Ib)monazites are classified as magmatic monazites;another monazite(Mnz-II)from the MBG formed during a magmatic-hydrothermal transitional stage.Nb-Ta in the Suzhou pluton gradually concentrated during fractional crystallization and alteration of Ti-rich minerals and biotite.Ultimately,with the involvement of F-Li-rich fluid,Nb-Ta mineralization occurred during the magmatic-hydrothermal transition.The Suzhou pluton is considered part of a 600-km-and NE-SW-trending Nb-rich A-type granite belt together with other Early Cretaceous A-type granites in the Jiangnan Orogen that offers prospects of a new target for Nb-Ta prospecting.展开更多
Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicati...Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicating a significant link between magmatic activity and mineralization processes in these areas.We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization.The major and trace element geochemistry,zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported.The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with I-type geochemical characteristics.The relatively high K_(2)O and Na_(2)O concentrations and low high field strength elements(HFSE)and heavy rare earth elements(HREE),the presence of biotite within these I-type granites,together with their low zircon saturation temperatures(731-779℃),suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing,medium-to high-K metabasaltic rocks.The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293±1.7 Ma,which is consistent with the age range of other Middle Tien-Shan granitoids.The zircon Hf isotopic composition isε_(Hf)(t)=-7.56 to-5.05,indicating an ancient(1.39 to 1.52 Ga)crustal origin.Petrographical,geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex.These results indicate that the Kumtor granite was emplaced in the Early Permian in a postcollision setting and may have temporal and genetic relationships with gold mineralization.展开更多
Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior an...Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.展开更多
Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a ser...Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a series of dynamic compression tests were conducted on granite treated by cyclic thermal shocks at different temperatures.We analyzed the effects of cyclic thermal shock on the thermal-related physical and dynamic mechanical behaviors of granite.Specifically,the P-wave velocity,dynamic strength,and elastic modulus of the tested granite decrease with increasing temperature and cycle number,while porosity and peak strain increase.The degradation law of dynamic mechanical properties could be described by a cubic polynomial.Cyclic thermal shock promotes shear cracks propagation,causing dynamic failure mode of granite to transition from splitting to tensile-shear composite failure,accompanied by surface spalling and debris splashing.Moreover,the thermal shock damage evolution and coupled failure mechanism of tested granite are discussed.The evolution of thermal shock damage with thermal shock cycle numbers shows an obvious S-shaped surface,featured by an exponential correlation with dynamic mechanical parameters.In addition,with increasing thermal shock temperature and cycles,granite mineral species barely change,but the length and width of thermal cracks increase significantly.The non-uniform expansion of minerals,thermal shock-induced cracking,and water-rock interaction are primary factors for deteriorating dynamic mechanical properties of granite under cyclic thermal shock.展开更多
The Bainiuchang Ag-polymetallic ore deposit,located in southeastern Yunnan,China,is one of the region's largest deposits.However,the hyp abyssal granite porphyry within this mining area has yet to be comprehensive...The Bainiuchang Ag-polymetallic ore deposit,located in southeastern Yunnan,China,is one of the region's largest deposits.However,the hyp abyssal granite porphyry within this mining area has yet to be comprehensively investigated.In this study,we conducted geochemical,geochronological,whole-rock Sr-Nd isotope,and zircon Hf isotope analyses on granite porphyry samples collected from the Bainiuchang deposit.The results indicate that the granite porphyry formed between 87.5 and 87.4 Ma in the Late Yanshanian period.Geochemically,the granite is strongly peraluminous,with high silica and alkali contents consistent with S-type granite characteristics.The granite porphyry is enriched in large-ion lithophile elements(Rb,Th,U,and K)and is relatively depleted in Ba and Sr.The initial ^(87)Sr/^(86)Sr ratios are high(0.71392-0.71585),accompanied by low ε_(Nd)(t)values(-8.9 to-8.2).The zircons exhibited similarly low ε_(Hf)(t)values(-9.31 to-3.6).These data suggest that the porphyry-forming magma originated from a continental crustal source.The two-stage Hf and Nd model ages are estimated at 1534-1216 Ma and 1615-1561 Ma,respectively.Thus,the granite porphyry likely formed under a strike-slip extensional setting in the Late Yanshanian period and resulted from the re-melting of Proterozoic basement metagreywackes.This porphyry shares a similar magmatic origin with concealed granite bodies within the deposit and is associated with structural reactivation during the Yanshanian.The findings of this study provide valuable insights into the tectonomagmatic mineralization processes in the B ainiuchang area.展开更多
Granite residual soil slope is often destroyed,which poses great threats to Rong County in southeastern Guangxi,China.Heavy rainfall and fissures are the major triggering and internal factors.The fissure that controls...Granite residual soil slope is often destroyed,which poses great threats to Rong County in southeastern Guangxi,China.Heavy rainfall and fissures are the major triggering and internal factors.The fissure that controls the slope stability and the associated failure mechanisms remain unclear.The purpose of this study was to identify the controlling fissures through field investigation,elucidate the effect of its position,and analyze the failure process and hydrological response of residual soil slope through artificial flume model tests.The results comprised five aspects.(1)Surface weathering and unloading fissures could affect slope stability.(2)The failure processes with different fissure positions exhibited inconsistent characteristics.(3)The volume moisture content(VMC)had the most direct response at the fissure tip.The corresponding infiltration rate was the highest.The response time of pore water pressure(PWP)was longer than that of VMC.Fluctuations in PWP were associated with VMC and changes in the soil microstructure due to local deformation.(4)Slope failure was accompanied by serious soil erosion.This could be attributed to the infiltration direction and the interaction between soil and water.(5)Fissured soil slopes experienced five similar failure processes:sheet erosion and partial failure of the slope foot,occurrence of preferential flow and enlargement of the sliding area,creep deformation and tension fissure emergence,block sliding and gully erosion,and flow-slip.展开更多
基金supported financially by the National Natural Science Foundation of China(Grant Nos.41872054 and 41272083)。
文摘Granite origin is crucial to understanding the evolution of continental crust,yet many concerns about granite genesis remain yielding ongoing debates.A new integrated study of petrology,geochronology,mineral chemistry and whole-rock geochemistry of the Dupangling granitic complex in South China,indicate that the granites in the western complex were emplaced during the Caledonian(418 Ma);they have SiO_(2)contents of 68.1-70.4 wt%,and are calc-alkaline and strongly peraluminous with high maficity[(TFe_(2)O_(3)+MgO)>4.0 wt%]and exhibit^(87)Sr/^(86)Sr(t)of 0.7234-0.7311 andε_(Nd)(t)of-9.0 to-6.7.The granites in the eastern complex,emplaced during the Indosinian(212 Ma),have high SiO_(2)contents(73.3-79.8 wt%)and exhibit affinities with A-type granites,such as enrichment in alkalis and rare earth elements(REEs),and depletion in Sr and Ba along with high TFeO/(TFeO+MgO),Ga/Al and Zr+Y+Ce+Nb;these granites exhibit^(87)Sr/^(86)Sr(t)of 0.7221 andε_(Nd)(t)of-9.2 to-7.5.Geochemical characteristics suggest that the older Caledonian granites were derived through dehydration melting of Paleoproterozoic metasedimentary rocks plus additional(~20%-32%)input from mafic magma,whereas the Indosinian granites were generated through shallow dehydration melting of the Caledonian granitoids.
基金funded by the Science and Technology Department of Yunnan Province(202303AA080006)the National Natural Science Foundation of China(41972312 and 41672329).
文摘A systematic study of early Paleozoic S-type granites in Pinghe enhances our understanding of the tectonic evolution of proto-Tethys and provides a foundation for exploring rare metal deposits in the region.The Pinghe granites consist of monzogranite and leucogranite.Zircon U-Pb dating shows that the emplacement ages of the monzogranite and leucogranite are 502.0 Ma and 500.9 Ma,respectively.All samples have high SiO_(2) content and a weakly to strongly peraluminous character(A/CNK=1.08-1.23),consistent with S-type granites.The monzogranite has relatively high CaO,Sr,Ba,and CaO/Na_(2)O ratios but lower Rb.In contrast,the leucogranite has lower CaO,Sr,Ba,and CaO/Na_(2)O ratios but higher Rb.The similar ε_(Nd)(t)values(−9.3 to−8.4)and Pb isotopic compositions((^(206)Pb/^(204)Pb)t=18.03-19.36,(^(207)Pb/^(204)Pb)t=15.66-15.76,(^(208)Pb/^(204)Pb)t=37.97-38.55)suggest that the monzogranite formed through partial melting of crustal greywacke,while the leucogranite originated from partial melting of crustal pelite.Regional geological studies suggest that these S-type granites in Pinghe were emplaced in an active continental margin setting,associated with the westward subduction of the proto-Tethys oceanic slab.The geochemical characteristics of leucogranite are consistent with those of tungsten-tin-related granites,indicating significant metallogenic potential for W and Sn deposits.
基金funded by the Program of Science and Technology Department of Jiangxi Province(2023KDG01002 and 2023KDG01003)the National Natural Science Foundation of China(42062006 and 41962007)+1 种基金the Key Research and Development Program of Jiangxi Province(20223BBG71015)the Personnel Training Project of Jiangxi Bureau of Geology(2023JXDZKJRC02,2022JXDZKJRC04,and 2024JXDZKJRC05).
文摘The Tong’an-Baishuidong mining district(TBMD),located in the eastern section of the Jiangnan Orogen,is a newly discovered granite-type lithium mining district.Thisstudy presents new monazite U-Pb chronological,whole-rock geochemical,and Nd-Pb isotopic data to reveal the petrogenesis and geodynamic setting of the Wutang granites in the TBMD.The monazite U-Pb age of 145.8±1.0 Ma indicates that the granites were emplaced at the end of the Late Jurassic.Whole-rock geochemical results demonstrate that the Wutang granites are enriched in SiO_(2)(72.80-73.40 wt%)but depleted in CaO(0.44-0.90 wt%)and MgO+TiO_(2)+TFeO(1.79-2.05 wt%).These granites exhibit negative Eu anomalies(δEu=0.3−0.4)and high aluminum saturation indexes(A/CNK=1.2−1.6),differentiation indexes(DI=90-92),and Rb/Sr ratios(4.7-8.1).They also have moderate Ba contents(239-278 ppm)and low Sr contents(52.7-82.0 ppm)as well as low Nb/Ta(2.2-5.3)and Zr/Hf(21.3-31.5)ratios.All these indicate that they are highly fractionated granites.Additionally,these granites contain 5-10 wt%muscovite but no hornblende,with calculated corundum contents of 2.3-5.5 wt%.They have low high-field strength element(HFSE)contents(Zr+Nb+Ce+Y=182-202 ppm)and zircon saturation temperatures(700-770℃),with Th and Y negatively linked with Rb.These petrographic and geochemi-cal features further reveal that the Wutang granites belong to highly fractionated S-type granites.TheεNd(t)values of these granites range from−9.03 to−8.23,corresponding to two-stage model ages(T DM2)of 1488-1553 Ma.The initial Pb isotope ratios are:(206 Pb/^(204)Pb)i=18.38-18.55,(^(207)Pb/^(204)Pb)i=15.67-15.68,and(^(208)Pb/^(204)Pb)i=38.62-38.67.These Nd-Pb isotopic results demonstrate that the parental magma originated from the partial melting of ancient crustal materials.In the meantime,the TBMD in the eastern section of the Jiangnan Orogen was in a compression-extension transitional setting associated with the episodic subduction of the Paleo-Pacific Plate.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.41872054 and 41272083)。
文摘The petrogenesis and genetic link to polymetallic mineralization of the granites in the Dayishan complex,southern Hunan province remain debated.Here,we present an integrated study on the petrology,zircon U-Pb ages and whole-rock geochemistry for this complex.Our findings indicate that the southern complex consists of(amphibole-bearing)biotite granites and muscovite granites emplaced at 153-151 Ma,and the central and northern complex consists of two-mica granites and tourmaline-bearing muscovite granites,respectively with the former emplaced at 164 Ma and the latter at 150 Ma.The(amphibole-bearing)biotite granites have SiO_(2) contents of 68.0-73.8 wt% and are enriched in alkalis and rare earth elements and depleted in Sr and Ba.They display Zr+Y+Ce+Nb>350 ppm and 10000×Ga/Al>2.6 along with high zircon saturation temperatures(821-883oC).The two-mica granites and(tourmaline-bearing)muscovite granites have high SiO_(2)(74.4-77.3 wt%)and low Ga/Al,Zr+Nb+Ce+Y,K/Rb,Zr/Hf,and Nb/Ta along with low zircon saturation temperatures(709-817℃).Geochemical characteristics suggest that the(amphibole-bearing)biotite granites are A-type granites generated through shallow dehydration melting of early Paleozoic granitoids,and that the two-mica granites and(tourmaline-bearing)muscovite granites are fractionated A-type granites produced through fractionation crystallization from the(amphibole-bearing)biotite granites accompanied by fluid fractionation.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金funded by the National Natural Science Foundation of China(Grant Nos.42072089 and 41530206)。
文摘Both fractional crystallization and fluid-melt-crystal interaction are involved in the formation of highly fractionated granites.This paper assessed those two processes using geochemistry of muscovite and tourmaline and bulkrock chemistry of multi-phase Wangxianling granitoids,South China.Compositional variations suggest the coarse-grained muscovite granite is produced from fractional crystallization of the two-mica granite whereas the fine-grained muscovite granite represents a distinct magma pulse.Progressive fractionation of quartz,feldspar and biotite leads to elevated boron and aluminum content in melt which promoted muscovite and tourmaline to crystallize,which promotes two-mica granite evolving towards tourmaline-bearing muscovite granite.Fluid-melt-crystal interaction occurred at the magmatichydrothermal transitional stage and resulted in the textural and chemical zonings of tourmaline and muscovite in finegrained muscovite granite.The rims of both tourmaline and muscovite are characterized by the enrichment of fluid mobile elements such as Li,Mn,Cs and Zn and heavierδ^(11)B values of the tourmaline rims(-15.0‰to-13.6‰)compared to cores(-15.7‰to-14.3‰).Meanwhile,significant M-type REE tetrad effects(TE_(1,3)=1.07-1.18)and low K/Rb ratios(48-52)also correspond to fluid-melt-crystal interaction.This study shows zoned muscovite and tourmaline can be excellent tracers of fractional crystallization and late-stage fluid-melt-crystal interaction in highly evolved magmatic systems.
基金the support provided by the National Natural Science Foundation of China(Grant Nos.52278336 and 42302032)Guangdong Basic and Applied Research Foundation(Grant Nos.2023B1515020061).
文摘Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.
基金supported by Science and Technology Development Fund(STDF)of the Arab Republic of Egypt(No.23080)entitled―Rare Metal Ore Deposits in Egypt:A comparative survey in altered granites from selected areas in the Central Eastern Desert‖(to M.A.ABU EL-RUS)National Key Research and Development Program of China(No.2023YFF0804200).
文摘The Precambrian Homrit-Waggat granite is a post-orogenic batholithic intrusion located in the northern region of the Nubian Shield,characterized by a typical annular morphology and significant secondary alteration.This study aims to elucidate the processes that have shaped the intrusion in both macroscopic and microscopic perspectives,employing a combination of field observation and petrographic analysis alongside major and trace element compositions of minerals.Within the central region of the pluton,biotite and amphibole are observed sporadically,while the predominant crystallization of anhydrous oligoclase in the outer regions has led to a progressive increase in volatile components within the residual melt,ultimately resulting in a volatile-saturated aluminosilicate melt.The exsolved fluids subsequently interacted with the previously crystallized mineral assemblage,producing metasomatic overprinting.As the cooling and crystallization continued,the water pressure within the magma chamber gradually escalated until it equaled or surpassed the confining pressure,leading to the formation of fractures and veins filled with minerals that crystallized from the residual aqueous fluids.The ongoing degassing and expulsion of aqueous fluids from the magma chamber’s interior ultimately contributed to the collapse of the chamber’s roof,resulting in the annular ring-dike morphology observed in the Homrit Waggat pluton.
基金supported by the Open Fund Project of the Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources(Grant No.2022IREE101)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)the Geological Investigation Project(Grant Nos.DD20243483,DD20221643).
文摘The pervasively distributed granitoids in South China contributed greatly to regional polymetallic mineralization,including tungsten,tin,copper,gold,rare metals,and rare earth elements(REEs).To ascertain the dynamic backgrounds,rock types and genesis of the parent rocks related to the Early-Middle Jurassic ionic rare earth mineralization,typical deposits at Muzishan,Xiahu,and Zudong were investigated by conducting petrographic,geochronologic,whole-rock geochemical,and Sr-Nd-Pb isotope analyses,which found that the parent rocks from the Muzishan deposit were the A1-type K-feldspar granite(~195 Ma),from the Zudong deposit were the A2-type monzogranite(~171 Ma),and from the Xiahu deposit were the I-type monzogranite(~167 Ma).All the three granitic rocks underwent different degrees of fractionation,with the Xiahu granite experiencing the highest degree,followed by the Zudong granite,and the Muzishan granite undergoing the lowest degree.The Muzishan granite was concluded to be formed under an intraplate extensional tectonic regime influenced by the hotspots or the mantle plume.The Zudong granite was formed in a post-arc extensional setting related to subduction-collision-rollback of the paleo-Pacific Plate,which caused upwelling of the asthenosphere,thinning of the lithosphere,and partial melting of crustal materials.The Xiahu granite was generated under a transitional tectonic setting of extension and compression,triggered by delamination and rollback of the paleo-Pacific Plate.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFC2903904)National Natural Science Foundation of China(Grant Nos.U1906208 and U21A20106).
文摘Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.
基金the National Natural Science Foundation of China(Grant No.52309130)the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD004).
文摘The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.
基金financed by the Inner Mongolia Geological Exploration Fund Project (Grant No. 2020YS03)the project of “Geology of Mineral Resources in China” from China Geological Survey (Grant Nos. DD20221695, DD20190379, DD20160346)+1 种基金the Project of Transformation in Scientific and Technological Achievements (Grant Nos. 2023CX10, HE2121)the Fundamental Research Funds of the Central Public Welfare Scientific Research Institutes (Grant No. JKYZD202313)
文摘The Shuangjianzishan deposit is a typical magmatic-hydrothermal deposit located in the southern Great Xing'an Range.Recent investigations have identified significant copper and tin mineralization at depth within the Shuangjianzishan deposit;however,the coupling relationship between magmatic emplacement and mineralization processes remains debated.This study presents whole-rock geochemistry,zircon LA-ICP-MS U-Pb dating,and zircon Hf isotope analyses of granite from the northern Shuangjianzishan deposit.The analysis results indicate the granite crystallized between 252.3 and 257.9 Ma,corresponding to Late Permian magmatic activity.The granite displaysε_(Hf)(t)=5.95-14.87,and t_(DM2)=333-900 Ma.Geochemically,the granite is rich in Si and Al,with high K,classified as a calc-alkaline,weakly peraluminous rock.LREEs are enriched,while HREEs are depleted,and a slight negative Eu anomaly,all of which are consistent with A-type granite characteristics.The Hercynian granite in the Shuangjianzishan deposit formed during the latter or post-collisional stages of the collision orogeny following the closure of the Paleo-Asian Ocean in the late Paleozoic era.The material source indicates a mixed origin,involving both crust and mantle contributions.The granite is also enriched in Cu,Pb,and Zn,suggesting its potential role as an ore-forming material source for the Shuangjianzishan deposit.This study proposes a potential link between Hercynian magmatism and mineralization at the Shuangjianzishan deposit for the first time,suggesting that multistage metallogenesis may be a response to successive magmatic events from Hercynian to Yanshanian periods in the mining area.
基金supported financially by the Research Foundation of the Department of Natural Resources of Hunan Province(20230135DZ)the Provincial Natural Science Foundation of Hunan(2024JJ7080)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(23C0320)Hunan Provincial College Student Innovation and Entrepreneurship Training Project(S202311527014).
文摘There is significant debate concerning the tectonic characteristics and evolutionary understanding of the South China Block(SCB)during the Early Mesozoic.One of the key points of contention is the tectonic-magmatic activity during the Triassic and its dynamic mechanisms.However,research on the detailed chronology and tectonic settings of granite plutons in key regions remains insuffi-cient,limiting the understanding of the tectonic-magmatic dynamic mechanisms in the interior of SCB during the Triassic.In this contribution,we present whole-rock major and trace elemental data,Sr-Nd isotope data,LA-ICP-MS zircon U-Pb age dating,and Lu-Hf isotope data for granites of Dashenshan pluton in the Xiangzhong,northwest part of SCB.The results indicate that the Dashenshan granite has an emplacement age of 208.4-212.5 Ma,characterized by high SiO_(2),Na_(2)O,and K_(2)O contents and low MgO and CaO.The Dashenshan granite is enriched in light rare-earth elements with a significant negative Eu anomaly(averageδEu=0.42).It is also enriched in Rb,K,and Th and shows pronounced depletion in Nb,Ta,and Ti,classifying it as peraluminous calc-alkaline granite,specifically of the I-type.The zircon ε_(Hf(t)) values range from−8.39 to−4.4,with an average of−5.82,and the Sr-Nd isotopes are relatively enriched[ε_(Nd)(t)=−9.31 to−6.8].Combining these geochemical characteristics,it is revealed that the Dashenshan granite was derived from the partial melting of middle to upper crustal metamorphic basement materials under medium-to low-temperature conditions,with possible minor contributions from mantle-derived materials.Furthermore,it underwent fractional crystallization,including plagioclase differentiation.By integrating the geochemical features and spatial distribution of Triassic granites in SCB,this study suggests that the regional tectonic evolution of SCB during the Triassic was primarily controlled by the collision of the SCB with the Indochina Block and the North China Block.In Xiangzhong,the tectonic setting transitioned from syn-collisional compression to post-collisional extension during the Late Triassic.The Dashenshan pluton formed in a post-collisional extensional setting,resulting from the decompression melting of middle-to-upper crustal rocks.The upwelling of the asthenosphere and upward heat transfer likely played a significant role in the formation of the Dashenshan granitic magma.
基金supported by the National Natural Science Foundation of China(Grant Nos.41903025 and 41803048)the National Nonprofit Institute Research Grant of IGGE(Grant Nos.AS2024J03,JY202106 and AS2022P03)+2 种基金the Hebei Key Science and Technology Program(Grant No.19057411Z)the National Science and Technology Major Project(Grant No.2024ZD1002402)the China Geological Survey Project(Grant No.DD20221807).
文摘The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive phases of the Suzhou granite,whole-rock geochemistry,geochemistry and U-Th-Pb dating of monazite was analyzed.The unique geochemical characteristics show that the Suzhou pluton can be discriminated as an A-type granite.LA-ICP-MS U-Th-Pb dating of monazite in both the medium-and coarse-grained biotite granite(MBG)and the fine-grained biotite granite(FBG)indicates that the granite formed between 124 and 127 Ma.Based on geochemical characteristics and mineral textures,the MBG(Mnz-Ia)and FBG(Mnz-Ib)monazites are classified as magmatic monazites;another monazite(Mnz-II)from the MBG formed during a magmatic-hydrothermal transitional stage.Nb-Ta in the Suzhou pluton gradually concentrated during fractional crystallization and alteration of Ti-rich minerals and biotite.Ultimately,with the involvement of F-Li-rich fluid,Nb-Ta mineralization occurred during the magmatic-hydrothermal transition.The Suzhou pluton is considered part of a 600-km-and NE-SW-trending Nb-rich A-type granite belt together with other Early Cretaceous A-type granites in the Jiangnan Orogen that offers prospects of a new target for Nb-Ta prospecting.
基金partly supported by Eurasia-Pacific Uninet projects(Nos.EPU 08/2019 and EPU 18/2020)to Etienne Skrzypek,Rustam Orozbaev and Christoph Hauzenberger。
文摘Permian intrusions are widespread in the Middle and Southern Tien-Shan,with fewer occurrences in the Northern Tien-Shan.Notably,many of these intrusions are spatially associated with a variety of ore deposits,indicating a significant link between magmatic activity and mineralization processes in these areas.We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization.The major and trace element geochemistry,zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported.The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with I-type geochemical characteristics.The relatively high K_(2)O and Na_(2)O concentrations and low high field strength elements(HFSE)and heavy rare earth elements(HREE),the presence of biotite within these I-type granites,together with their low zircon saturation temperatures(731-779℃),suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing,medium-to high-K metabasaltic rocks.The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293±1.7 Ma,which is consistent with the age range of other Middle Tien-Shan granitoids.The zircon Hf isotopic composition isε_(Hf)(t)=-7.56 to-5.05,indicating an ancient(1.39 to 1.52 Ga)crustal origin.Petrographical,geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex.These results indicate that the Kumtor granite was emplaced in the Early Permian in a postcollision setting and may have temporal and genetic relationships with gold mineralization.
基金supported by the International Collaborative Research Program(fundamental research,2021-2023)funded by Korea Institute of Civil Engineering and Building Technology(KICT).
文摘Rock fractures or faults could be reactivated by the thermal stress generated during the decay process of the high-level radioactive waste in deep geological repositories(DGRs).Understanding thermoshearing behavior and its influencing factors are important for the long-term performance assessment of DGRs.We designed multistage mechanical(M)shear tests and thermomechanical(TM)shear tests on three 100 mm-cubic granite specimens,each containing a single inclined sawcut fracture with distinct microroughness of 8-15μm.M test results have shown that the static friction coefficient of the granite fracture decreases in proportion to the increase in the logarithm of the loading rate within the range of 1-15 kPa/s.For the given heating and boundary conditions,thermal loading rate,i.e.,thermal stress increment with heating time,is measured to be around 1 kPa/s in the fractured granite.Thermoshearing can be well predicted by the linear Mohr-Coulomb failure envelope deduced from M shear tests employing a loading rate that is comparable with the thermal loading rate.The granite fractures exhibited two distinct slip patterns during the mechanical shearing,i.e.,stick-slip observed in the smooth fracture and stable sliding in the relatively rough surface.In contrast,the mechanical loading rate(1-15 kPa/s)investigated in this study appears to not influence the slip pattern.Unlike those in M shear tests,thermoshearing in both smooth and relatively rough fractures show stable sliding with a very slow peak velocity of around 0.002μm/s.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(Grant Nos.52225904 and 52039007)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC0377)supported by the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Exploring dynamic mechanical responses and failure behaviors of hot dry rock(HDR)is significant for geothermal exploitation and stability assessment.In this study,via the split Hopkinson pressure bar(SHPB)system,a series of dynamic compression tests were conducted on granite treated by cyclic thermal shocks at different temperatures.We analyzed the effects of cyclic thermal shock on the thermal-related physical and dynamic mechanical behaviors of granite.Specifically,the P-wave velocity,dynamic strength,and elastic modulus of the tested granite decrease with increasing temperature and cycle number,while porosity and peak strain increase.The degradation law of dynamic mechanical properties could be described by a cubic polynomial.Cyclic thermal shock promotes shear cracks propagation,causing dynamic failure mode of granite to transition from splitting to tensile-shear composite failure,accompanied by surface spalling and debris splashing.Moreover,the thermal shock damage evolution and coupled failure mechanism of tested granite are discussed.The evolution of thermal shock damage with thermal shock cycle numbers shows an obvious S-shaped surface,featured by an exponential correlation with dynamic mechanical parameters.In addition,with increasing thermal shock temperature and cycles,granite mineral species barely change,but the length and width of thermal cracks increase significantly.The non-uniform expansion of minerals,thermal shock-induced cracking,and water-rock interaction are primary factors for deteriorating dynamic mechanical properties of granite under cyclic thermal shock.
基金supported by Yunnan Major Scientific and Technological Project(202202AG050006)National Natural Science Foundation of China(42362010)The Open Fund of Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization,Ministry of Nature Resources(ZRZYBSJSYS2022002)。
文摘The Bainiuchang Ag-polymetallic ore deposit,located in southeastern Yunnan,China,is one of the region's largest deposits.However,the hyp abyssal granite porphyry within this mining area has yet to be comprehensively investigated.In this study,we conducted geochemical,geochronological,whole-rock Sr-Nd isotope,and zircon Hf isotope analyses on granite porphyry samples collected from the Bainiuchang deposit.The results indicate that the granite porphyry formed between 87.5 and 87.4 Ma in the Late Yanshanian period.Geochemically,the granite is strongly peraluminous,with high silica and alkali contents consistent with S-type granite characteristics.The granite porphyry is enriched in large-ion lithophile elements(Rb,Th,U,and K)and is relatively depleted in Ba and Sr.The initial ^(87)Sr/^(86)Sr ratios are high(0.71392-0.71585),accompanied by low ε_(Nd)(t)values(-8.9 to-8.2).The zircons exhibited similarly low ε_(Hf)(t)values(-9.31 to-3.6).These data suggest that the porphyry-forming magma originated from a continental crustal source.The two-stage Hf and Nd model ages are estimated at 1534-1216 Ma and 1615-1561 Ma,respectively.Thus,the granite porphyry likely formed under a strike-slip extensional setting in the Late Yanshanian period and resulted from the re-melting of Proterozoic basement metagreywackes.This porphyry shares a similar magmatic origin with concealed granite bodies within the deposit and is associated with structural reactivation during the Yanshanian.The findings of this study provide valuable insights into the tectonomagmatic mineralization processes in the B ainiuchang area.
基金financially supported by the National Natural Science Foundation of China(No.41901132)the Natural Scientific Project of Guangxi Zhuang Autonomous Region(Nos.2019GXNSFAA185015,2021GXNSFBA220025)+1 种基金the Interdisciplinary Scientific Research Foundation of Guangxi University(No.2022JCC026)the Project of Key Laboratory of Early Rapid Identification,Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province(No.KLGDTC-2021-01)。
文摘Granite residual soil slope is often destroyed,which poses great threats to Rong County in southeastern Guangxi,China.Heavy rainfall and fissures are the major triggering and internal factors.The fissure that controls the slope stability and the associated failure mechanisms remain unclear.The purpose of this study was to identify the controlling fissures through field investigation,elucidate the effect of its position,and analyze the failure process and hydrological response of residual soil slope through artificial flume model tests.The results comprised five aspects.(1)Surface weathering and unloading fissures could affect slope stability.(2)The failure processes with different fissure positions exhibited inconsistent characteristics.(3)The volume moisture content(VMC)had the most direct response at the fissure tip.The corresponding infiltration rate was the highest.The response time of pore water pressure(PWP)was longer than that of VMC.Fluctuations in PWP were associated with VMC and changes in the soil microstructure due to local deformation.(4)Slope failure was accompanied by serious soil erosion.This could be attributed to the infiltration direction and the interaction between soil and water.(5)Fissured soil slopes experienced five similar failure processes:sheet erosion and partial failure of the slope foot,occurrence of preferential flow and enlargement of the sliding area,creep deformation and tension fissure emergence,block sliding and gully erosion,and flow-slip.