The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
A widely employed energy technology,known as reverse electrodialysis(RED),holds the promise of delivering clean and renewable electricity from water.This technology involves the interaction of two or more bodies of wa...A widely employed energy technology,known as reverse electrodialysis(RED),holds the promise of delivering clean and renewable electricity from water.This technology involves the interaction of two or more bodies of water with varying concentrations of salt ions.The movement of these ions across a membrane generates electricity.However,the efficiency of these systems faces a challenge due to membrane performance degradation over time,often caused by channel blockages.One potential solution to enhance system efficiency is the use of nanofluidic membranes.These specialized membranes offer high ion exchange capacity,abundant ion sources,and customizable channels with varying sizes and properties.Graphene oxide(GO)-based membranes have emerged as particularly promising candidates in this regard,garnering significant attention in recent literature.This work provides a comprehensive overview of the literature surrounding GO membranes and their applications in RED systems.It also highlights recent advancements in the utilization of GO membranes within these systems.Finally,it explores the potential of these membranes to play a pivotal role in electricity generation within RED systems.展开更多
Understanding the ecogeographic mechanisms driving morphological variation is pivotal in biogeographic studies. However, patterns and determinants of such variation remain contentious, particularly in amphibians. Alth...Understanding the ecogeographic mechanisms driving morphological variation is pivotal in biogeographic studies. However, patterns and determinants of such variation remain contentious, particularly in amphibians. Although several hypotheses have been formulated and investigated in amphibians, their validity remains disputed with mixed support. Using the Sichuan spiny frog(Nanorana sichuanensis) as an indicator, we investigated the morphological variations across geographic and environmental gradients to explore the underlying ecogeographic mechanisms. We found that both the body size and limb characteristics of N.sichuanensis were not significantly related to latitude or elevation, suggesting that it did not follow Bergmann's or Allen's rules. Eye diameter decreased linearly with increasing elevation and latitude, whereas snout length increased with increasing elevation and latitude. Heat balance, endurance, seasonality, water availability, and primary productivity collectively explain body size variation. Hierarchical partitioning identified primary productivity and thermal excursion as the most influential factors, explaining significant variability in body size and other morphological features. Specifically, primary productivity accounted for 52.40% of the variation in body size, whereas thermal excursion had the greatest impact on eye diameter(36.23%) and snout length(72.17%). Based on body size and dimensionally reduced morphological features, our results identified ecogeographic patterns, assessed the validity of different hypotheses, and examined how environmental factors influence these morphological variations. More generally, our study offers comprehensive insights into the ecogeographic variation observed in mountain amphibians,provides a critical evaluation of existing ecogeographic hypotheses, and infers possible morphological adaptations in response to environmental change.展开更多
Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical model...Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.展开更多
The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is...The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is still unclear.Based on the DGT(Diffusive Gradients in Thin-films)technology,this study sets up three moisture control scenarios:continuous wet,wet-dry alternating,and continuous dry,and carries out a 6-month soil moisture control experiment.In the experiment,the DGT device collected the diffusion gradient data of soil selenium under different scenarios,and analyzed the migration characteristics of selenium in combination with the adsorption isotherm.Meanwhile,the release rate,migration coefficient,and bioavailability parameters of selenium are calculated by fitting the first-order kinetic model,further verifying the reliability and applicability of the DGT data.The experimental results demonstrate that under continuous wet conditions,the release rate of soil selenium reaches 1.85µg·cm^(-2)·h^(-1),with a migration coefficient of 0.012 cm^(2)·h^(-1)and a bioavailability parameter of 0.74;under wet-dry alternating conditions,they are 1.42µg·cm^(-2)·h^(-1),0.01 cm^(2)·h^(-1),and 0.68,respectively;under continuous dry conditions,the release rate of soil selenium is the smallest,at 0.88µg·cm^(-2)·h^(-1),with a migration coefficient of 0.004 cm^(-2)·h^(-1)and a bioavailability parameter of 0.5.The results of this experiment reveal the dynamic behavior of soil selenium under different moisture conditions and reflect the high efficiency of DGT technology in dynamic monitoring and quantitative analysis of soil selenium behavior,providing a scientific basis for the optimal management of rhizosphere soil selenium.展开更多
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als...In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased.展开更多
Species richness in any area results from the interplay of the processes of speciation,extinction,and dispersal.The relationships between species richness and climate should be considered as an outcome of the effects ...Species richness in any area results from the interplay of the processes of speciation,extinction,and dispersal.The relationships between species richness and climate should be considered as an outcome of the effects of climate on speciation,extinction,and dispersal.Diversificationrate represents the balance of speciation and extinction rates over time.Here,I explore diversificationrates in mosses across geographic and climatic gradients worldwide.Specifically,I investigate latitudinal patterns and climatic associations of the mean diversificationrate of mosses at global,hemispheric,and smaller scales.I findthat the mean diversificationrate of mosses is positively correlated with species richness of mosses,increases with decreasing latitude and increasing mean annual temperature and annual precipitation,and is more strongly associated with mean annual temperature than with annual precipitation.These findingsshed light on variation of species richness in mosses across the world.The negative relationship between species richness and latitude and the positive relationship between species richness and mean diversificationrate in mosses suggest that higher moss species richness at lower latitudes might have resulted,at least to some degree,from higher moss diversificationrates at lower latitudes.展开更多
Climate warming causes mountainous species to shift their distributions towards higher elevations.How elevation influences growth-climate relationship in mountain regions has been intensively investigated.However,how ...Climate warming causes mountainous species to shift their distributions towards higher elevations.How elevation influences growth-climate relationship in mountain regions has been intensively investigated.However,how microtopography shapes tree growth and its drought resistance along the elevation gradient remains poorly understood.We used a network of Larix principis-rupprechtii tree-ring data comprising 1,918 trees from different age classes and mountain slopes,along an elevation gradient ranging from 970 to 1,869 m,to investigate how slope gradients mediate the growth and drought resilience of larch trees along an elevation gradient in North China.Growing season drought and temperature were the major limiting climatic factors for larch trees across the study region.Larch trees younger than 40 years exhibited a stronger positive correlation between basal area increment(BAI)and elevation on steep slopes(10°-35°)than on flat(0°-5°)or gentle(5°-10°)slopes.At low-elevation steep slopes,the growth of larch trees younger than 40 years showed a stronger correlation with the Palmer drought severity index(PDSI).Both resistance and resilience were found to increase along the elevation gradient on steep slopes for young larch trees but not for old larch trees.No significant differences were observed in the drought recovery ability of larch trees across all age groups at increasing elevation.Our results highlight that drought events may particularly affect the growth of young larch trees on low-elevation steep slopes,with potential repercussions on mortality rates.展开更多
Changes in agricultural land use affect ecosystem services and their interactions.However,the differential influences of agricultural land use transitions under different topographical gradients on ecosystem service i...Changes in agricultural land use affect ecosystem services and their interactions.However,the differential influences of agricultural land use transitions under different topographical gradients on ecosystem service interactions remain poorly understood,which limits the integrated management of agricultural systems.The objectives of this study were to analyze the transitional trends of major agricultural land types across distinct topographical gradients and to probe the differential impacts of these transitions on ecosystem service interactions.Using Hangzhou of China as the study area,the analysis focused on four major agricultural land use types(arable land,orchard,tea garden,and abandoned land).The GTWR model was applied to investigate spatiotemporal non-stationarity in the impacts of their transitions on the ecosystem service trade-offs and synergies.The results showed that during 2010–2020,the agricultural land use pattern in plain areas became more diversified and fragmented,while it shifted towards greater homogeneity and contiguity in hilly and mountainous areas.Between 2010–2015 and 2015–2020,the dominant output type of agricultural land use transition was arable land.The dominant input type in plain areas shifted from arable land to orchard,whereas in hilly and mountainous areas,it was orchard and tea garden.The higher synergy between habitat quality and other ecosystem services primarily occurred in plain areas.Over time,the higher synergy between carbon sequestration and soil retention predominantly shifted from mountainous areas to plain areas.A variety of abandoned types across different topographical gradients fostered synergies by reducing the supply capacity of various ecosystem services.Trade-offs between ecosystem services in hilly and mountainous areas could be alleviated by converting arable land into orchard and tea garden.These findings highlight the importance of adopting differentiated,dynamic,and systematic measures for agricultural spatial development in implementing ecosystem management across different topographical gradients.展开更多
Aiming at the issues of controlling the translocation speed of DNA through a solid-state nanopore and enlarging the signal-to-noise ratio of ionic current modulation, which are challenges for the application of nanopo...Aiming at the issues of controlling the translocation speed of DNA through a solid-state nanopore and enlarging the signal-to-noise ratio of ionic current modulation, which are challenges for the application of nanopore technology in DNA detection, salt concentration gradients are applied across the nanopore to investigate their influence on the DNA translocation time and signal-to-noise ratio. Experimental data demonstrates that, in symmetric concentration conditions, both the current blockade and dwell time for A-DNA translocation through a solid-state nanopore increase along with potassium chloride concentration. When the concentration in the trans chamber is decreased from 1 to 0.1 mol/L, keeping the concentration of the cis chamber at 1 mol/L, the normalized current blockade is found to be increased by one order. The increased dwell time and enhanced signal-to-noise ratio are achieved with salt gradients across the nanopore, which can improve the sensitivity when detecting DNA samples.展开更多
Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil proper...Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.展开更多
The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insight...The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the defi- nition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a contin- uum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study sug- gests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used.展开更多
Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight...Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.展开更多
Nerve guidance channels for peripheral nerve injury: Over the past decade, nerve guidance channels (NGCs) have emerged as a promising technology for regenerating gap injuries in peripheral nerves. Nerve gap injurie...Nerve guidance channels for peripheral nerve injury: Over the past decade, nerve guidance channels (NGCs) have emerged as a promising technology for regenerating gap injuries in peripheral nerves. Nerve gap injuries resulting from neurodegeneration and trauma, such as car accidents and battlefield wounds, affect hun- dreds of thousands of people annually. Motivated by suboptimal results obtained with the current gold standard of autologous grafting (i.e., autografts), various commercially available NGCs composed of synthetic and biomaterials are now alternatively available (Jia et al., 2014; Jones et al., 2016).展开更多
There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradient...There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.展开更多
Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore...Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore water is easily disturbed during sample collection,indicating that there was a shortage of traditional methods for investigating Cd bio availability.Here,sediment cores were collected from rivers,after which sequential extraction and diffusive gradients in thin films(DGT)method were employed to determine Cd potential bio availability in the sediments and pore water.We found that Cd concentrations measured by DGT were lower than that in pore water profiles,and Cd distribution in various fractions changed remarkably.Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations(r^2=0.76),exchangeable and weak acid soluble fraction(r^2=0.68),ferromanganese fraction(r^2=0.72)and bound organic matter or oxidizable fraction(r^2=0.54).However,the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles(r^2=0.26).These results demonstrated that DGT method could provide more accurate information of Cd bio availability in sediment profiles than traditional methods.展开更多
It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this stu...It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.展开更多
Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can c...Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature.展开更多
Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performan...Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performance and computational complexity analyses are carried out also.Furthermore,compared with existing SAF algorithms,the influence of step-size and noise types on SAF algorithms are explored for nonlinear system identification under artificial datasets.Numerical results show that the SAF-Adagrad and SAFRMSProp algorithms have better convergence performance than some existing SAF algorithms(i.e.,SAF-SGD,SAF-ARC-MMSGD,and SAF-LHC-MNAG).The analysis results of various measured real datasets also verify this conclusion.Overall,the effectiveness of SAF-Adagrad and SAF-RMSProp are confirmed for the accurate identification of nonlinear systems.展开更多
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory (Grant No.220100011)+1 种基金supported by the International Space Science Institute–Beijing(ISSI-BJ) project“The Electromagnetic Data Validation and Scientific Application Research based on CSES Satellite”and ISSI/ISSI-BJ project,“Multi-Scale Magnetosphere–Ionosphere–Thermosphere Interaction.”
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
基金Key Research and Development Program of Zhejiang Province,Grant/Award Number:2021C04019National Natural Science Foundation of China,Grant/Award Number:U20A20338Natural Science Foundation of Zhejiang Province,Grant/Award Number:LQ21H180012.
文摘A widely employed energy technology,known as reverse electrodialysis(RED),holds the promise of delivering clean and renewable electricity from water.This technology involves the interaction of two or more bodies of water with varying concentrations of salt ions.The movement of these ions across a membrane generates electricity.However,the efficiency of these systems faces a challenge due to membrane performance degradation over time,often caused by channel blockages.One potential solution to enhance system efficiency is the use of nanofluidic membranes.These specialized membranes offer high ion exchange capacity,abundant ion sources,and customizable channels with varying sizes and properties.Graphene oxide(GO)-based membranes have emerged as particularly promising candidates in this regard,garnering significant attention in recent literature.This work provides a comprehensive overview of the literature surrounding GO membranes and their applications in RED systems.It also highlights recent advancements in the utilization of GO membranes within these systems.Finally,it explores the potential of these membranes to play a pivotal role in electricity generation within RED systems.
基金supported by the National Natural Science Foundation of China (32071544, 32271737)the Interdisciplinary Innovation Team of the Chinese Academy of Sciences (CAS) “Light of West China” Program (xbzg-zdsys-202207)。
文摘Understanding the ecogeographic mechanisms driving morphological variation is pivotal in biogeographic studies. However, patterns and determinants of such variation remain contentious, particularly in amphibians. Although several hypotheses have been formulated and investigated in amphibians, their validity remains disputed with mixed support. Using the Sichuan spiny frog(Nanorana sichuanensis) as an indicator, we investigated the morphological variations across geographic and environmental gradients to explore the underlying ecogeographic mechanisms. We found that both the body size and limb characteristics of N.sichuanensis were not significantly related to latitude or elevation, suggesting that it did not follow Bergmann's or Allen's rules. Eye diameter decreased linearly with increasing elevation and latitude, whereas snout length increased with increasing elevation and latitude. Heat balance, endurance, seasonality, water availability, and primary productivity collectively explain body size variation. Hierarchical partitioning identified primary productivity and thermal excursion as the most influential factors, explaining significant variability in body size and other morphological features. Specifically, primary productivity accounted for 52.40% of the variation in body size, whereas thermal excursion had the greatest impact on eye diameter(36.23%) and snout length(72.17%). Based on body size and dimensionally reduced morphological features, our results identified ecogeographic patterns, assessed the validity of different hypotheses, and examined how environmental factors influence these morphological variations. More generally, our study offers comprehensive insights into the ecogeographic variation observed in mountain amphibians,provides a critical evaluation of existing ecogeographic hypotheses, and infers possible morphological adaptations in response to environmental change.
基金supports of Basic Science Center Program for Multiphase Evolution in Hyper-gravity of the National Natural Science Foundation of China(No.51988101)National Natural Science Foundation of China(Nos.52109138 and 52122403)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001).
文摘Hydraulic fracture growth is significantly influenced by the minimum horizontal principal stress gradient and the fracturing fluid pressure gradient.However,these gradients are often neglected in scaled physical modeling experiments due to difficulties in reproducing them.This study uses centrifugal hypergravity to simulate both gradients and investigate their effects on fracture propagation.Artificial mortar specimens(ϕ200 mm×400 mm)are fractured under 1g(normal gravity),50g,and 100g.Results show that compared to 1g,fractures under 50g and 100g exhibit increasingly uneven propagation,with higher g-values leading to greater asymmetry.To interpret this,a theoretical analysis based on fracture mechanics is conducted.When the fluid pressure gradient exceeds the stress gradient,a positive net gradient is generated,increasing net pressure at the lower fracture tip.This raises the stress intensity factor at the lower tip,promoting downward growth.As g increases,the disparity becomes more significant,resulting in greater fracture deviation.In conclusion,this study,for the first time,has verified and explained that the net gradient can change the propagation of hydraulic fractures,providing important guidance for wellbore placement under stress gradients.
文摘The effects of long-term moisture changes on the migration,release,and bioavailability of selenium in soil are complex.Due to the lack of effective monitoring methods for precise quantification,its dynamic behavior is still unclear.Based on the DGT(Diffusive Gradients in Thin-films)technology,this study sets up three moisture control scenarios:continuous wet,wet-dry alternating,and continuous dry,and carries out a 6-month soil moisture control experiment.In the experiment,the DGT device collected the diffusion gradient data of soil selenium under different scenarios,and analyzed the migration characteristics of selenium in combination with the adsorption isotherm.Meanwhile,the release rate,migration coefficient,and bioavailability parameters of selenium are calculated by fitting the first-order kinetic model,further verifying the reliability and applicability of the DGT data.The experimental results demonstrate that under continuous wet conditions,the release rate of soil selenium reaches 1.85µg·cm^(-2)·h^(-1),with a migration coefficient of 0.012 cm^(2)·h^(-1)and a bioavailability parameter of 0.74;under wet-dry alternating conditions,they are 1.42µg·cm^(-2)·h^(-1),0.01 cm^(2)·h^(-1),and 0.68,respectively;under continuous dry conditions,the release rate of soil selenium is the smallest,at 0.88µg·cm^(-2)·h^(-1),with a migration coefficient of 0.004 cm^(-2)·h^(-1)and a bioavailability parameter of 0.5.The results of this experiment reveal the dynamic behavior of soil selenium under different moisture conditions and reflect the high efficiency of DGT technology in dynamic monitoring and quantitative analysis of soil selenium behavior,providing a scientific basis for the optimal management of rhizosphere soil selenium.
基金With the support of the key project of Knowledge Innovation, CAS(KZCX1-y01, KZCX-SW-18), Fund of the China National Natural Sciences and the Daqing Oilfield with Grant No. 49894190
文摘In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased.
文摘Species richness in any area results from the interplay of the processes of speciation,extinction,and dispersal.The relationships between species richness and climate should be considered as an outcome of the effects of climate on speciation,extinction,and dispersal.Diversificationrate represents the balance of speciation and extinction rates over time.Here,I explore diversificationrates in mosses across geographic and climatic gradients worldwide.Specifically,I investigate latitudinal patterns and climatic associations of the mean diversificationrate of mosses at global,hemispheric,and smaller scales.I findthat the mean diversificationrate of mosses is positively correlated with species richness of mosses,increases with decreasing latitude and increasing mean annual temperature and annual precipitation,and is more strongly associated with mean annual temperature than with annual precipitation.These findingsshed light on variation of species richness in mosses across the world.The negative relationship between species richness and latitude and the positive relationship between species richness and mean diversificationrate in mosses suggest that higher moss species richness at lower latitudes might have resulted,at least to some degree,from higher moss diversificationrates at lower latitudes.
基金funded by the National Natural Science Foundation of China(No.U24A20353)the S&T Program of Hebei(Nos.226Z6801G,C2021204002,and 20210365)+1 种基金the Talent Introduction Program in Hebei Agricultural University(No.YJ201918)supported by the SERI-funded ERC Starting Grant,project MB23.00011.
文摘Climate warming causes mountainous species to shift their distributions towards higher elevations.How elevation influences growth-climate relationship in mountain regions has been intensively investigated.However,how microtopography shapes tree growth and its drought resistance along the elevation gradient remains poorly understood.We used a network of Larix principis-rupprechtii tree-ring data comprising 1,918 trees from different age classes and mountain slopes,along an elevation gradient ranging from 970 to 1,869 m,to investigate how slope gradients mediate the growth and drought resilience of larch trees along an elevation gradient in North China.Growing season drought and temperature were the major limiting climatic factors for larch trees across the study region.Larch trees younger than 40 years exhibited a stronger positive correlation between basal area increment(BAI)and elevation on steep slopes(10°-35°)than on flat(0°-5°)or gentle(5°-10°)slopes.At low-elevation steep slopes,the growth of larch trees younger than 40 years showed a stronger correlation with the Palmer drought severity index(PDSI).Both resistance and resilience were found to increase along the elevation gradient on steep slopes for young larch trees but not for old larch trees.No significant differences were observed in the drought recovery ability of larch trees across all age groups at increasing elevation.Our results highlight that drought events may particularly affect the growth of young larch trees on low-elevation steep slopes,with potential repercussions on mortality rates.
基金supported by the National Natural Science Foundation of China(42201281,42471320 and 42407652)the Natural Science Foundation of Anhui Province,China(2208085QD102)。
文摘Changes in agricultural land use affect ecosystem services and their interactions.However,the differential influences of agricultural land use transitions under different topographical gradients on ecosystem service interactions remain poorly understood,which limits the integrated management of agricultural systems.The objectives of this study were to analyze the transitional trends of major agricultural land types across distinct topographical gradients and to probe the differential impacts of these transitions on ecosystem service interactions.Using Hangzhou of China as the study area,the analysis focused on four major agricultural land use types(arable land,orchard,tea garden,and abandoned land).The GTWR model was applied to investigate spatiotemporal non-stationarity in the impacts of their transitions on the ecosystem service trade-offs and synergies.The results showed that during 2010–2020,the agricultural land use pattern in plain areas became more diversified and fragmented,while it shifted towards greater homogeneity and contiguity in hilly and mountainous areas.Between 2010–2015 and 2015–2020,the dominant output type of agricultural land use transition was arable land.The dominant input type in plain areas shifted from arable land to orchard,whereas in hilly and mountainous areas,it was orchard and tea garden.The higher synergy between habitat quality and other ecosystem services primarily occurred in plain areas.Over time,the higher synergy between carbon sequestration and soil retention predominantly shifted from mountainous areas to plain areas.A variety of abandoned types across different topographical gradients fostered synergies by reducing the supply capacity of various ecosystem services.Trade-offs between ecosystem services in hilly and mountainous areas could be alleviated by converting arable land into orchard and tea garden.These findings highlight the importance of adopting differentiated,dynamic,and systematic measures for agricultural spatial development in implementing ecosystem management across different topographical gradients.
基金The National Natural Science Foundation of China(No.51435003,51375092)Fundamental Research Funds for the Central Universities+1 种基金the Innovative Project for Graduate Students of Jiangsu Province(No.KYLX_0100)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1540)
文摘Aiming at the issues of controlling the translocation speed of DNA through a solid-state nanopore and enlarging the signal-to-noise ratio of ionic current modulation, which are challenges for the application of nanopore technology in DNA detection, salt concentration gradients are applied across the nanopore to investigate their influence on the DNA translocation time and signal-to-noise ratio. Experimental data demonstrates that, in symmetric concentration conditions, both the current blockade and dwell time for A-DNA translocation through a solid-state nanopore increase along with potassium chloride concentration. When the concentration in the trans chamber is decreased from 1 to 0.1 mol/L, keeping the concentration of the cis chamber at 1 mol/L, the normalized current blockade is found to be increased by one order. The increased dwell time and enhanced signal-to-noise ratio are achieved with salt gradients across the nanopore, which can improve the sensitivity when detecting DNA samples.
基金Under the auspices of the China Postdoctoral Science Foundation(No.2017M620889)the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0405-05)the State Key Research Development Program of China(No.2016YFC0501803,2016YFC0501802)。
文摘Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model(CART) and structural equation modelling(SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass(AGB) and belowground biomass(BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content(SWC), soil bulk density(SBD), soil organic carbon(SOC), soil total nitrogen(STN), and pH. Soil available nitrogen(SAN), SOC and p H, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and p H had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.
文摘The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has pro- vided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the defi- nition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a contin- uum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study sug- gests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used.
基金supported by the National Natural Science Foundation of China (No.11002008)funded in part by Ministry of Science and Technology of China (No.2014CB845303)
文摘Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.
基金supported by the Maryland Stem Cell Research Fund(2013-MSCRFE-146-00)(to XJ)in part by the National Institute of Health(R01HL118084)(to XJ)
文摘Nerve guidance channels for peripheral nerve injury: Over the past decade, nerve guidance channels (NGCs) have emerged as a promising technology for regenerating gap injuries in peripheral nerves. Nerve gap injuries resulting from neurodegeneration and trauma, such as car accidents and battlefield wounds, affect hun- dreds of thousands of people annually. Motivated by suboptimal results obtained with the current gold standard of autologous grafting (i.e., autografts), various commercially available NGCs composed of synthetic and biomaterials are now alternatively available (Jia et al., 2014; Jones et al., 2016).
文摘There is a general assumption in the literature that insect herbivory increases towards the tropics, but decreases with increasing altitude. Similar generalities have been identified along other environmental gradients, such as resource, temperature, climatic and biotic gradients. However there is growing evidence in the scientific literature that such generalities are not consistent. This could be due to a number of reasons including the lack of consistency in the way herbivory is assessed such as different methodologies used by researchers, or fundamental differences in leaf damage caused by different types of insect herbivores. Here we assess 61 publications researching insect herbivory along a range of environmental gradients (both biotic and abiotic) and review the methods that researchers have used to collected their data. We found leaf chewing from samples collected in North America dominated the field and most studies assessed herbivory on a single host plant species. Thirty three percent of the studies assessed latitudinal gradients, while 10% assessed altitudinal gradients. Insect herbivory was most commonly expressed as percentage leaf damage using point herbivory. Fewer studies measured a range of different types of herbivory (such as sap sucking, leaf mining, galling, and root feeding) as leaves aged. From our synthesis, we hope that future research into insect herbivory along environmental gradients will take into account herbivory other than just leaf chewing, such as sap sucking, which may cause more damage to plants. Future research should also assess herbivory as a rate, rather than just a single point in time as damage to a young leaf may be more costly to a plant than damage to a mature or senescing leaf. Measurements of plant traits will also assist in comparing herbivory across habitats, plant species, and within species physiological variation. The true impacts that insects have on plants via herbivory along environmental gradients are still poorly understood.
基金supported by the Youth Innovation Promotion Association CAS(Wenzhong Tang,2017059)the National Natural Science Foundation of China(No.41877368)
文摘Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore water is easily disturbed during sample collection,indicating that there was a shortage of traditional methods for investigating Cd bio availability.Here,sediment cores were collected from rivers,after which sequential extraction and diffusive gradients in thin films(DGT)method were employed to determine Cd potential bio availability in the sediments and pore water.We found that Cd concentrations measured by DGT were lower than that in pore water profiles,and Cd distribution in various fractions changed remarkably.Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations(r^2=0.76),exchangeable and weak acid soluble fraction(r^2=0.68),ferromanganese fraction(r^2=0.72)and bound organic matter or oxidizable fraction(r^2=0.54).However,the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles(r^2=0.26).These results demonstrated that DGT method could provide more accurate information of Cd bio availability in sediment profiles than traditional methods.
基金supported by the Key Project of National Key Research and Development Plans(Grant No.2016YFC0503106)
文摘It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.
文摘Resin transfer molding(RTM)is among the most used manufacturing processes for composite parts.Initially,the resin cure is initiated by heat supply to the mold.The supplementary heat generated during the reaction can cause thermal gradients in the composite,potentially leading to undesired residual stresses which can cause shrinkage and warpage.In the present numerical study of these processes,a one-dimensional finite difference method is used to predict the temperature evolution and the degree of cure in the course of the resin polymerization;the effect of some parameters on the thermal gradient is then analyzed,namely:the fiber nature,the use of multiple layers of reinforcement with different thermal properties and also the temperature cycle variation.The validity of this numerical model is tested by comparison with experimental and numerical results in the existing literature.
基金supported by the National Natural Science Foundation of China(61871420)the Natural Science Foundation of Sichuan Province,China(23NSFSC2916)the introduction of talent,Southwest MinZu University,China,funding research projects start(RQD2021064).
文摘Two novel spline adaptive filtering(SAF)algorithms are proposed by combining different iterative gradient methods,i.e.,Adagrad and RMSProp,named SAF-Adagrad and SAF-RMSProp,in this paper.Detailed convergence performance and computational complexity analyses are carried out also.Furthermore,compared with existing SAF algorithms,the influence of step-size and noise types on SAF algorithms are explored for nonlinear system identification under artificial datasets.Numerical results show that the SAF-Adagrad and SAFRMSProp algorithms have better convergence performance than some existing SAF algorithms(i.e.,SAF-SGD,SAF-ARC-MMSGD,and SAF-LHC-MNAG).The analysis results of various measured real datasets also verify this conclusion.Overall,the effectiveness of SAF-Adagrad and SAF-RMSProp are confirmed for the accurate identification of nonlinear systems.