COVID-19 is a growing problem worldwide with a high mortality rate.As a result,the World Health Organization(WHO)declared it a pandemic.In order to limit the spread of the disease,a fast and accurate diagnosis is requ...COVID-19 is a growing problem worldwide with a high mortality rate.As a result,the World Health Organization(WHO)declared it a pandemic.In order to limit the spread of the disease,a fast and accurate diagnosis is required.A reverse transcript polymerase chain reaction(RT-PCR)test is often used to detect the disease.However,since this test is time-consuming,a chest computed tomography(CT)or plain chest X-ray(CXR)is sometimes indicated.The value of automated diagnosis is that it saves time and money by minimizing human effort.Three significant contributions are made by our research.Its initial purpose is to use the essential finetuning methodology to test the action and efficiency of a variety of vision models,ranging from Inception to Neural Architecture Search(NAS)networks.Second,by plotting class activationmaps(CAMs)for individual networks and assessing classification efficiency with AUC-ROC curves,the behavior of these models is visually analyzed.Finally,stacked ensembles techniques were used to provide greater generalization by combining finetuned models with six ensemble neural networks.Using stacked ensembles,the generalization of the models improved.Furthermore,the ensemble model created by combining all of the finetuned networks obtained a state-of-the-art COVID-19 accuracy detection score of 99.17%.The precision and recall rates were 99.99%and 89.79%,respectively,highlighting the robustness of stacked ensembles.The proposed ensemble approach performed well in the classification of the COVID-19 lesions on CXR according to the experimental results.展开更多
This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applie...This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applied to tunnel wall image recognition.Gaussian filtering,data augmentation and other data pre-processing techniques are used to improve the data quality and quantity.Combined with transfer learning,the generality,accuracy and efficiency of the deep learning(DL)model are further improved,and finally we achieve 89.96%accuracy.Compared with other state-of-the-art CNN architectures,such as ResNet and Inception-ResNet-V2(IRV2),the presented deep transfer learning model is more stable,accurate and efficient.To reveal the rock classification mechanism of the proposed model,Gradient-weight Class Activation Map(Grad-CAM)visualizations are integrated into the model to enable its explainability and accountability.The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou,China,with great results.展开更多
Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing proce...Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing process such as material handling, tanning and dyeing. Manual inspection of leather surfaces is subjective and inconsistent in nature;hence machine vision systems have been widely adopted for the automated inspection of leather defects. It is neces-sary develop suitable image processing algorithms for localize leather defects such as folding marks, growth marks, grain off, loose grain, and pinhole due to the ambiguous texture pattern and tiny nature in the localized regions of the leather. This paper presents deep learning neural network-based approach for automatic localization and classifica-tion of leather defects using a machine vision system. In this work, popular convolutional neural networks are trained using leather images of different leather defects and a class activation mapping technique is followed to locate the region of interest for the class of leather defect. Convolution neural networks such as Google net, Squeeze-net, RestNet are found to provide better accuracy of classification as compared with the state-of-the-art neural network architectures and the results are presented.展开更多
基金The research is funded by the Researchers Supporting Project at King Saud University,(Project#RSP-2021/305).
文摘COVID-19 is a growing problem worldwide with a high mortality rate.As a result,the World Health Organization(WHO)declared it a pandemic.In order to limit the spread of the disease,a fast and accurate diagnosis is required.A reverse transcript polymerase chain reaction(RT-PCR)test is often used to detect the disease.However,since this test is time-consuming,a chest computed tomography(CT)or plain chest X-ray(CXR)is sometimes indicated.The value of automated diagnosis is that it saves time and money by minimizing human effort.Three significant contributions are made by our research.Its initial purpose is to use the essential finetuning methodology to test the action and efficiency of a variety of vision models,ranging from Inception to Neural Architecture Search(NAS)networks.Second,by plotting class activationmaps(CAMs)for individual networks and assessing classification efficiency with AUC-ROC curves,the behavior of these models is visually analyzed.Finally,stacked ensembles techniques were used to provide greater generalization by combining finetuned models with six ensemble neural networks.Using stacked ensembles,the generalization of the models improved.Furthermore,the ensemble model created by combining all of the finetuned networks obtained a state-of-the-art COVID-19 accuracy detection score of 99.17%.The precision and recall rates were 99.99%and 89.79%,respectively,highlighting the robustness of stacked ensembles.The proposed ensemble approach performed well in the classification of the COVID-19 lesions on CXR according to the experimental results.
文摘This paper proposes an accurate,efficient and explainable method for the classification of the surrounding rock based on a convolutional neural network(CNN).The state-of-the-art robust CNN model(EfficientNet)is applied to tunnel wall image recognition.Gaussian filtering,data augmentation and other data pre-processing techniques are used to improve the data quality and quantity.Combined with transfer learning,the generality,accuracy and efficiency of the deep learning(DL)model are further improved,and finally we achieve 89.96%accuracy.Compared with other state-of-the-art CNN architectures,such as ResNet and Inception-ResNet-V2(IRV2),the presented deep transfer learning model is more stable,accurate and efficient.To reveal the rock classification mechanism of the proposed model,Gradient-weight Class Activation Map(Grad-CAM)visualizations are integrated into the model to enable its explainability and accountability.The developed deep transfer learning model has been applied to support the tunneling of the Xingyi City Bypass in the high mountain area of Guizhou,China,with great results.
文摘Modern leather industries are focused on producing high quality leather products for sustaining the market com-petitiveness. However, various leather defects are introduced during various stages of manufacturing process such as material handling, tanning and dyeing. Manual inspection of leather surfaces is subjective and inconsistent in nature;hence machine vision systems have been widely adopted for the automated inspection of leather defects. It is neces-sary develop suitable image processing algorithms for localize leather defects such as folding marks, growth marks, grain off, loose grain, and pinhole due to the ambiguous texture pattern and tiny nature in the localized regions of the leather. This paper presents deep learning neural network-based approach for automatic localization and classifica-tion of leather defects using a machine vision system. In this work, popular convolutional neural networks are trained using leather images of different leather defects and a class activation mapping technique is followed to locate the region of interest for the class of leather defect. Convolution neural networks such as Google net, Squeeze-net, RestNet are found to provide better accuracy of classification as compared with the state-of-the-art neural network architectures and the results are presented.