In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss ...In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss accumulated.Moreover,we focus on distributed algorithms which do not use gradient information and projection operators to improve the applicability and computational efficiency.By introducing the deterministic differences and the randomized differences to substitute the gradient information of the objective functions and removing the projection operator in the traditional algorithms,we design two kinds of gradient-free distributed online optimization algorithms without projection step,which can economize considerable computational resources as well as has less limitations on the applicability.We prove that both of two algorithms achieves consensus of the estimates and regrets of\(O\left(\log(T)\right)\)for local strongly convex objective,respectively.Finally,a simulation example is provided to verify the theoretical results.展开更多
This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state inf...This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.展开更多
A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,...A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.展开更多
A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R...A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R_(X)(φ)is applied on the single-qubit binary quantum classifier,and the training data and parameters are loaded intoφin the form of vector multiplication.The cost function is decreased by finding the value of each parameter that yields the minimum expectation value of measuring the quantum circuit.The algorithm is performed iteratively for all parameters one by one until the cost function satisfies the stop condition.The proposed GFO-based SQC is demonstrated for classification tasks in Iris and MNIST datasets and compared with the Adam-based SQC and the quantum support vector machine(QSVM).Furthermore,the performance of the GFO-based SQC is discussed when the rotation gate in the quantum device is under different types of noise.The simulation results show that the GFO-based SQC can reach a high accuracy in reduced time.Additionally,the proposed GFO algorithm can quickly complete the training process of the SQC.Importantly,the GFO-based SQC has a good performance in noisy environments.展开更多
为解决一类有向拓扑结构下模型未知的非线性多智能体系统的聚类一致性问题,考虑到传统无模型自适应控制(MFAC)算法中存在的收敛速度慢等问题,提出了一种基于梯度下降的无模型聚类一致性控制算法。首先,在无模型算法中引入自适应矩估计(a...为解决一类有向拓扑结构下模型未知的非线性多智能体系统的聚类一致性问题,考虑到传统无模型自适应控制(MFAC)算法中存在的收敛速度慢等问题,提出了一种基于梯度下降的无模型聚类一致性控制算法。首先,在无模型算法中引入自适应矩估计(adaptive moment estimation,Adam)梯度下降优化方法,利用梯度的矩估计自适应地调整学习率并更新MFAC中的伪偏导数,加快并提高了模型的准确性。然后,在系统拓扑结构和聚类耦合强度约束下定义多智能体聚类误差。在此基础上,设计了基于Adam-MFAC的多智能体聚类一致性控制协议。此外,对Adam-MFAC方法的稳定性和收敛性进行了分析和证明。最后,分别考虑了具有固定拓扑和切换拓扑的系统,对所提出的方法进行仿真,证明了所提出的控制策略在多智能体聚类一致性问题上的有效性和优越性。展开更多
针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
文摘In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss accumulated.Moreover,we focus on distributed algorithms which do not use gradient information and projection operators to improve the applicability and computational efficiency.By introducing the deterministic differences and the randomized differences to substitute the gradient information of the objective functions and removing the projection operator in the traditional algorithms,we design two kinds of gradient-free distributed online optimization algorithms without projection step,which can economize considerable computational resources as well as has less limitations on the applicability.We prove that both of two algorithms achieves consensus of the estimates and regrets of\(O\left(\log(T)\right)\)for local strongly convex objective,respectively.Finally,a simulation example is provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(Nos.62103169,51875380)the China Postdoctoral Science Foundation(No.2021M691313).
文摘This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62375140)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).
文摘A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900)。
文摘A single-qubit quantum classifier(SQC)based on a gradient-free optimization(GFO)algorithm,named the GFO-based SQC,is proposed to overcome the effects of barren plateaus caused by quantum devices.Here,a rotation gate R_(X)(φ)is applied on the single-qubit binary quantum classifier,and the training data and parameters are loaded intoφin the form of vector multiplication.The cost function is decreased by finding the value of each parameter that yields the minimum expectation value of measuring the quantum circuit.The algorithm is performed iteratively for all parameters one by one until the cost function satisfies the stop condition.The proposed GFO-based SQC is demonstrated for classification tasks in Iris and MNIST datasets and compared with the Adam-based SQC and the quantum support vector machine(QSVM).Furthermore,the performance of the GFO-based SQC is discussed when the rotation gate in the quantum device is under different types of noise.The simulation results show that the GFO-based SQC can reach a high accuracy in reduced time.Additionally,the proposed GFO algorithm can quickly complete the training process of the SQC.Importantly,the GFO-based SQC has a good performance in noisy environments.
文摘为解决一类有向拓扑结构下模型未知的非线性多智能体系统的聚类一致性问题,考虑到传统无模型自适应控制(MFAC)算法中存在的收敛速度慢等问题,提出了一种基于梯度下降的无模型聚类一致性控制算法。首先,在无模型算法中引入自适应矩估计(adaptive moment estimation,Adam)梯度下降优化方法,利用梯度的矩估计自适应地调整学习率并更新MFAC中的伪偏导数,加快并提高了模型的准确性。然后,在系统拓扑结构和聚类耦合强度约束下定义多智能体聚类误差。在此基础上,设计了基于Adam-MFAC的多智能体聚类一致性控制协议。此外,对Adam-MFAC方法的稳定性和收敛性进行了分析和证明。最后,分别考虑了具有固定拓扑和切换拓扑的系统,对所提出的方法进行仿真,证明了所提出的控制策略在多智能体聚类一致性问题上的有效性和优越性。
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。