To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele...To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.展开更多
This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hie...This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hierarchical clustering method to quickly obtain the best features of employees to reach their best performance.The work of this paper consists of two parts.The first part is based on collecting data of employees to calculate and illustrate the performance of each employee.The second part is based on the classification and prediction techniques of the employee performance.This model is designed to help companies in their decisions about the employees’performance.The classification and prediction algorithms use the Gradient Boosting Tree classifier to classify and predict the features.Results of the paper give the percentage of employees which are expected to leave the company after predicting their performance for the coming years.Results also show that the Grasshopper Optimization,followed by“KF”with the Gradient Boosting Tree as classifier and predictor,is characterized by a high accuracy.The proposed algorithm is compared with other known techniques where our results are fund to be superior.展开更多
BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced N...BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.展开更多
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c...To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend...Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.展开更多
The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that...The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.展开更多
It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this wor...It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method.展开更多
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat...In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible.展开更多
Protein-protein interactions(PPIs)are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technol...Protein-protein interactions(PPIs)are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(Pse AAC),pseudo position-specific scoring matrix(Pse PSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression(L1-RLR)to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15% and 90.47% on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets for Caenorhabditis elegans,Escherichia coli,Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.展开更多
The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requ...The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requirements of high accuracy for stability assessment of entry-type excavations.Therefore,this study proposes a new prediction method based on machine learning to scientifically adjust the critical span graph.Accordingly,the particle swarm optimization(PSO)algorithm is used to optimize the core parameters of the gradient boosting decision tree(GBDT),abbreviated as PSO-GBDT.Moreover,the classification performance of eight other classifiers including GDBT,k-nearest neighbors(KNN),two kinds of support vector machines(SVM),Gaussian naive Bayes(GNB),logistic regression(LR)and linear discriminant analysis(LDA)are also applied to compare with the proposed model.Findings revealed that compared with the other eight models,the prediction performance of PSO-GBDT is undoubtedly the most reliable,and its classification accuracy is up to 0.93.Therefore,this model has great potential to provide a more scientific and accurate choice for the stability prediction of underground excavations.In addition,each classification model is used to predict the stability category of several grid points divided by the critical span graph,and the updated critical span graph of each model is discussed in combination with previous studies.The results show that the PSO-GBDT model has the advantages of being scientific,accurate and efficient in updating the critical span graph,and its output decision boundary has strict theoretical support,which can help mine operators make favorable economic decisions.展开更多
The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their no...The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their nonlinear effects on urban vitality.Taking a Chinese metropolis—Hangzhou as a case study,this study applied the gradient boosting decision tree(GBDT)model to explore the nonlinear effects of the 5D factors of the urban built environment on urban social vitality and economic vitality and the importance of variables.The results show that the GBDT model has better goodness of fit than the traditional ordinary least squares(OLS)regression in the urban vitality models.The urban built environment plays an important role in affecting urban vitality,while built environment designs witness the most important effect.Specifically,the density of shopping facilities,medical facilities,and road networks are the most important factors affecting urban social vitality,while road network density,destination accessibility,and population density play the most important roles in affecting urban economic vitality.Finally,the urban built environment factors have nonlinear threshold effects on both urban economic and social vitality in Hangzhou,with differing nonlinear response patterns observed between social and economic dimensions.展开更多
The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key feature...The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm. Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults accurately.展开更多
The rapid development of digital technologies has driven the emergence and popularization of online-to-offline(O2O)retail,reshaping the retail landscape in urban China.However,spatial distribution characteristics and ...The rapid development of digital technologies has driven the emergence and popularization of online-to-offline(O2O)retail,reshaping the retail landscape in urban China.However,spatial distribution characteristics and influencing mechanisms of emerging O2O retail have not been thoroughly investigated in extant studies.Taking the central urban area of Guangzhou as the case,this study utilized multi-source data and machine learning methods to explore the distribution characteristics of O2O retail space and to further identify the nonlinear effects of the built environment,sociodemographic,and economic factors on its distribution.The results revealed that O2O retail space exhibited a‘single-center’distribution pattern,in contrast to the‘multi-center’distribution pattern of traditional retail space.This finding supported the diffusion of innovation hypothesis,highlighting that the expansion of O2O retail modes first spread from traditional developed retail space.Furthermore,spatial heterogeneities were observed across different types of O2O retail space,with O2O in-store showing a‘core-periphery’spatial structure as described by Central Place Theory,whereas O2O delivery displaying a‘horizontal,non-hierarchical,and multi-centered’network structure following Central Flow Theory.Compared to traditional retail space,the distribution of O2O retail space was more influenced by sociodemographic factors such as the proportion of youth,education level,and income level,but less affected by the built environment factors like office and building density.Furthermore,nonlinear effects of these influencing factors on the distribution of O2O retail space were identified,which enriched the existing literature by highlighting effective ranges and threshold effects.These findings provided valuable insights into O2O retail space development in the context of digital transformation.展开更多
Understanding the impact of meteorological and topographical factors on snow cover fraction(SCF)is crucial for water resource management in the Qilian Mountains(QLM),China.However,there is still a lack of adequate qua...Understanding the impact of meteorological and topographical factors on snow cover fraction(SCF)is crucial for water resource management in the Qilian Mountains(QLM),China.However,there is still a lack of adequate quantitative analysis of the impact of these factors.This study investigated the spatiotemporal characteristics and trends of SCF in the QLM based on the cloud-removed Moderate Resolution Imaging Spectroradiometer(MODIS)SCF dataset during 2000-2021 and conducted a quantitative analysis of the drivers using a histogram-based gradient boosting regression tree(HGBRT)model.The results indicated that the monthly distribution of SCF exhibited a bimodal pattern.The SCF showed a pattern of higher values in the western regions and lower values in the eastern regions.Overall,the SCF showed a decreasing trend during 2000-2021.The decrease in SCF occurred at higher elevations,while an increase was observed at lower elevations.At the annual scale,the SCF showed a downward trend in the western regions affected by westerly(52.84%of the QLM).However,the opposite trend was observed in the eastern regions affected by monsoon(45.73%of the QLM).The SCF displayed broadly similar spatial patterns in autumn and winter,with a significant decrease in the western regions and a slight increase in the central and eastern regions.The effect of spring SCF on spring surface runoff was more pronounced than that of winter SCF.Furthermore,compared with meteorological factors,a variation of 46.53%in spring surface runoff can be attributed to changes in spring SCF.At the annual scale,temperature and relative humidity were the most important drivers of SCF change.An increase in temperature exceeding 0.04°C/a was observed to result in a decline in SCF,with a maximum decrease of 0.22%/a.An increase in relative humidity of more than 0.02%/a stabilized the rise in SCF(about 0.06%/a).The impacts of slope and aspect were found to be minimal.At the seasonal scale,the primary factors impacting SCF change varied.In spring,precipitation and wind speed emerged as the primary drivers.In autumn,precipitation and temperature were identified as the primary drivers.In winter,relative humidity and precipitation were the most important drivers.In contrast to the other seasons,slope exerted the strongest influence on SCF change in summer.This study facilitates a detailed quantitative description of SCF change in the QLM,enhancing the effectiveness of watershed water resource management and ecological conservation efforts in this region.展开更多
Tropical lakes such as Lake Sentarum in Kalimantan,Indonesia,represent ecologically rich ecosystems with high biodiversity and constitute the largest lake on the island of Kalimantan.This lake serves as a sensitive in...Tropical lakes such as Lake Sentarum in Kalimantan,Indonesia,represent ecologically rich ecosystems with high biodiversity and constitute the largest lake on the island of Kalimantan.This lake serves as a sensitive indicator of climate change;however,its monitoring is often hindered by persistent cloud cover.This study evaluates the effectiveness of a Gradient Tree Boosting machine learning model integrated with multisource satellite data,including optical imagery,Sentinel-1 SAR,Sentinel-2,and high resolution NICFI data,in accurately mapping surface water dynamics.The Gradient Tree Boosting model was trained and validated using water and non water samples collected from annual imagery spanning 2019 to 2024,achieving validation accuracies ranging from 80 percent to 97 percent.Results demonstrate that Gradient Tree Boosting successfully integrates the strengths of each sensor,producing consistent annual water maps despite extreme hydrological fluctuations caused by El Nino and La Nina events.These findings highlight the model’s potential application in water resource man-agement,particularly in providing accurate baseline data to support adaptation planning for droughts and floods in climate vulnerable regions.展开更多
Understanding the influencing factors of ecosystem services(ESs)and their relationships is essential for sustainable ecosystem management in degraded alpine ecosystems.There is a lack of integrated multi-model approac...Understanding the influencing factors of ecosystem services(ESs)and their relationships is essential for sustainable ecosystem management in degraded alpine ecosystems.There is a lack of integrated multi-model approaches to explore the multidimensional influences on ESs and their relationships in alpine ecosystems.Taking the Daxing'anling forest area,Inner Mongolia(DFAIM)as a case study,this study used the integrated valuation of ecosystem services and trade-offs(InVEST)model to quantify four ESs—soil conservation(SC),water yield(WY),carbon storage(CS),and habitat quality(HQ)—from 2013 to 2018.We adopted root mean square deviation(RMSD)and coupling coordination degree models(CCDM)to analyze their relationships,and integrated three complementary approaches—optimal parameter-based geographical detector model(OPGDM),gradient boosting regression tree model(GBRTM),and quantile regression model(QRM)—to reveal multidimensional influencing factors.Key findings include the following:(1)From 2013 to 2018,WY,SC,and HQ declined while CS increased.WY was primarily influenced by mean annual precipitation(MAP),forest ratio(RF),and soil bulk density(SBD);CS and HQ by RF and population density(PD);and SC by slope(S),RF,and MAP.Mean annual temperature(MAT),gross domestic product(GDP),and road network density(RND)showed increasing negative impacts.(2)Low trade-off intensity(TI<0.15)dominated all ES pairs,with RF,MAP,PD,and normalized difference vegetation index(NDVI)being the dominant factors.The factor interactions primarily showed two-factor enhancement patterns.(3)The average coupling coordination degree(CCD)of the four ESs was low and declined over time,with low-CCD areas becoming increasingly prevalent.RF,S,SBD,and NDVI positively influenced CCD,while PD,MAT,GDP,and RND had increasing negative impacts,with over 62%of the factor interactions exceeding the individual factor effects.In summary,ES supply generally decreased.Local relationships showed moderate coordination,while overall relationships indicated primary dysfunction.Land use and natural factors primarily shaped these ES and their relationships,while climate and socioeconomic changes diminished ES supply and intensified competition.We recommend enhancing the resilience of natural systems rather than replacing them,establishing climate adaptation monitoring systems,and promoting conservation tillage and cross-departmental coordination mechanisms for collaborative ES optimization.These results provide valuable insights into the sustainable management of alpine ecosystems.展开更多
This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient a...This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.展开更多
红绿灯位置是道路上行人和车辆的交会点,极大影响着道路结构和交通运行,在城市路网中起着重要的枢纽作用。针对目前红绿灯位置检测方法准确率不够高、覆盖面区域不完整等问题,提出了一种基于轨迹数据的交通灯位置检测方法。该方法基于聚...红绿灯位置是道路上行人和车辆的交会点,极大影响着道路结构和交通运行,在城市路网中起着重要的枢纽作用。针对目前红绿灯位置检测方法准确率不够高、覆盖面区域不完整等问题,提出了一种基于轨迹数据的交通灯位置检测方法。该方法基于聚类-合并-分类-合并的四级模型,首先从清理过的轨迹数据中提取隐含的车辆行驶特征,再采用具有噪声的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)方法得到转向和停驻两类聚类中心,对这两类聚类中心进行合并,获得红绿灯位置的候选位置;根据候选位置一定范围内的轨迹点提取该区域的车流行驶特征,然后采用梯度提升决策树(gradient boosting decision tree,GBDT)算法进行分类,最后将候选位置的正样本融合,以检测红绿灯位置。采用成都市浮动车GPS轨迹数据进行实验,检测结果的F1分数为0.947,效果优于常规的机器学习方法。实验结果表明,基于GPS轨迹数据,采用提出的四层模型能有效检测出红绿灯的位置,该模型可被用于城市大范围红绿灯位置信息的快速获取和更新。展开更多
Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even de...Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even death. Curing epilepsy requires risky surgery. If not, the patient may be subjected to a long drug treatment associated with lifestyle advice without guarantee of total recovery. However, regardless of the type of treatment performed, late treatment necessarily creates psychological instability in the patient. It is therefore important to be able to diagnose the disease as early as possible if we desire that the patient does not suffer from its consequences on their mental health. That is why the study aims to propose a model for detecting epilepsy in order to be able to identify it as early as possible, especially in newborns. The objective of the article is to propose a model for detecting epilepsy using data from electroencephalogram signals from 10 newborns. This model developed using the extra trees classifier technique offers the possibility of predicting epilepsy in infants with an accuracy of around 99.4%.展开更多
基金The National Natural Science Foundation of China(No.52361165658,52378318,52078459).
文摘To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios.
文摘This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hierarchical clustering method to quickly obtain the best features of employees to reach their best performance.The work of this paper consists of two parts.The first part is based on collecting data of employees to calculate and illustrate the performance of each employee.The second part is based on the classification and prediction techniques of the employee performance.This model is designed to help companies in their decisions about the employees’performance.The classification and prediction algorithms use the Gradient Boosting Tree classifier to classify and predict the features.Results of the paper give the percentage of employees which are expected to leave the company after predicting their performance for the coming years.Results also show that the Grasshopper Optimization,followed by“KF”with the Gradient Boosting Tree as classifier and predictor,is characterized by a high accuracy.The proposed algorithm is compared with other known techniques where our results are fund to be superior.
文摘BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable.
基金The National Natural Science Foundation of China(No.51478114,51778136)
文摘To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
文摘Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.
文摘The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.
基金Projects(61573380,61303185) supported by the National Natural Science Foundation of ChinaProjects(2016M592450,2017M612585) supported by the China Postdoctoral Science FoundationProjects(2016JJ4119,2017JJ3416) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is easy for teenagers to view pornographic pictures on social networks. Many researchers have studied the detection of real pornographic pictures, but there are few studies on those that are artificial. In this work, we studied how to detect artificial pornographic pictures, especially when they are on social networks. The whole detection process can be divided into two stages: feature selection and picture detection. In the feature selection stage, seven types of features that favour picture detection were selected. In the picture detection stage, three steps were included. 1) In order to alleviate the imbalance in the number of artificial pornographic pictures and normal ones, the training dataset of artificial pornographic pictures was expanded. Therefore, the features which were extracted from the training dataset can also be expanded too. 2) In order to reduce the time of feature extraction, a fast method which extracted features based on the proportionally scaled picture rather than the original one was proposed. 3) Three tree models were compared and a gradient boost decision tree (GBDT) was selected for the final picture detection. Three sets of experimental results show that the proposed method can achieve better recognition precision and drastically reduce the time cost of the method.
文摘In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible.
基金supported by the National Natural Science Foundation of China(Grant No.61863010)the Key Research and Development Program of Shandong Province of China(Grant No.2019GGX101001)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MC007)。
文摘Protein-protein interactions(PPIs)are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(Pse AAC),pseudo position-specific scoring matrix(Pse PSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression(L1-RLR)to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15% and 90.47% on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets for Caenorhabditis elegans,Escherichia coli,Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.
基金the National Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Innovation-Driven Project of Central South University(Grant No.2020CX040).
文摘The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requirements of high accuracy for stability assessment of entry-type excavations.Therefore,this study proposes a new prediction method based on machine learning to scientifically adjust the critical span graph.Accordingly,the particle swarm optimization(PSO)algorithm is used to optimize the core parameters of the gradient boosting decision tree(GBDT),abbreviated as PSO-GBDT.Moreover,the classification performance of eight other classifiers including GDBT,k-nearest neighbors(KNN),two kinds of support vector machines(SVM),Gaussian naive Bayes(GNB),logistic regression(LR)and linear discriminant analysis(LDA)are also applied to compare with the proposed model.Findings revealed that compared with the other eight models,the prediction performance of PSO-GBDT is undoubtedly the most reliable,and its classification accuracy is up to 0.93.Therefore,this model has great potential to provide a more scientific and accurate choice for the stability prediction of underground excavations.In addition,each classification model is used to predict the stability category of several grid points divided by the critical span graph,and the updated critical span graph of each model is discussed in combination with previous studies.The results show that the PSO-GBDT model has the advantages of being scientific,accurate and efficient in updating the critical span graph,and its output decision boundary has strict theoretical support,which can help mine operators make favorable economic decisions.
基金National Social Science Foundation of China,No.20FJLB025National Natural Science Foundation of China,No.42471207,No.42471203Zhejiang Province Philosophy and Social Science Planning,Zhijiang Youth Special Project,24ZJQN118Y。
文摘The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their nonlinear effects on urban vitality.Taking a Chinese metropolis—Hangzhou as a case study,this study applied the gradient boosting decision tree(GBDT)model to explore the nonlinear effects of the 5D factors of the urban built environment on urban social vitality and economic vitality and the importance of variables.The results show that the GBDT model has better goodness of fit than the traditional ordinary least squares(OLS)regression in the urban vitality models.The urban built environment plays an important role in affecting urban vitality,while built environment designs witness the most important effect.Specifically,the density of shopping facilities,medical facilities,and road networks are the most important factors affecting urban social vitality,while road network density,destination accessibility,and population density play the most important roles in affecting urban economic vitality.Finally,the urban built environment factors have nonlinear threshold effects on both urban economic and social vitality in Hangzhou,with differing nonlinear response patterns observed between social and economic dimensions.
基金supported by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(Research on Power Meteorology Digitalization Application for Future Climate Scenarios and New Energy Operation Risks,J2023076).
文摘The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to enhance the optimization accuracy of the sparrow search algorithm. Finally, we construct an XGBoost-based model for the classification prediction of power grid meteorological faults and optimize the hyperparameters such as the optimal tree depth, optimal learning rate, and optimal number of iterations using an enhanced sparrow search algorithm. Experimental results demonstrate that our method outperforms the baseline models in predicting power grid faults accurately.
基金Under the auspices of National Natural Science Foundation of China(No.42271206)Guangdong Philosophy and Social Science Foundation(No.GD22XGL08)+1 种基金Basic and Applied Basic Research Foundation of Guangzhou(No.2024A04J4541)the Fundamental Research Funds for the Central Universities(No.2024ZYGXZR025,2024ZYGXZR003)。
文摘The rapid development of digital technologies has driven the emergence and popularization of online-to-offline(O2O)retail,reshaping the retail landscape in urban China.However,spatial distribution characteristics and influencing mechanisms of emerging O2O retail have not been thoroughly investigated in extant studies.Taking the central urban area of Guangzhou as the case,this study utilized multi-source data and machine learning methods to explore the distribution characteristics of O2O retail space and to further identify the nonlinear effects of the built environment,sociodemographic,and economic factors on its distribution.The results revealed that O2O retail space exhibited a‘single-center’distribution pattern,in contrast to the‘multi-center’distribution pattern of traditional retail space.This finding supported the diffusion of innovation hypothesis,highlighting that the expansion of O2O retail modes first spread from traditional developed retail space.Furthermore,spatial heterogeneities were observed across different types of O2O retail space,with O2O in-store showing a‘core-periphery’spatial structure as described by Central Place Theory,whereas O2O delivery displaying a‘horizontal,non-hierarchical,and multi-centered’network structure following Central Flow Theory.Compared to traditional retail space,the distribution of O2O retail space was more influenced by sociodemographic factors such as the proportion of youth,education level,and income level,but less affected by the built environment factors like office and building density.Furthermore,nonlinear effects of these influencing factors on the distribution of O2O retail space were identified,which enriched the existing literature by highlighting effective ranges and threshold effects.These findings provided valuable insights into O2O retail space development in the context of digital transformation.
基金funded by the Key Research and Development Project for Ecological Civilization Construction in Gansu Province(24YFFA010)the Gansu Province Major Science and Technology Project(22ZD6FA005)+2 种基金the Natural Science Foundation of Gansu Province(24JRRA091)the Shanxi Province Basic Research Program(Free Exploration Category)Youth Project(202403021212316)the Science and Technology Innovation Program for Universities in Shanxi Province(2024L327)。
文摘Understanding the impact of meteorological and topographical factors on snow cover fraction(SCF)is crucial for water resource management in the Qilian Mountains(QLM),China.However,there is still a lack of adequate quantitative analysis of the impact of these factors.This study investigated the spatiotemporal characteristics and trends of SCF in the QLM based on the cloud-removed Moderate Resolution Imaging Spectroradiometer(MODIS)SCF dataset during 2000-2021 and conducted a quantitative analysis of the drivers using a histogram-based gradient boosting regression tree(HGBRT)model.The results indicated that the monthly distribution of SCF exhibited a bimodal pattern.The SCF showed a pattern of higher values in the western regions and lower values in the eastern regions.Overall,the SCF showed a decreasing trend during 2000-2021.The decrease in SCF occurred at higher elevations,while an increase was observed at lower elevations.At the annual scale,the SCF showed a downward trend in the western regions affected by westerly(52.84%of the QLM).However,the opposite trend was observed in the eastern regions affected by monsoon(45.73%of the QLM).The SCF displayed broadly similar spatial patterns in autumn and winter,with a significant decrease in the western regions and a slight increase in the central and eastern regions.The effect of spring SCF on spring surface runoff was more pronounced than that of winter SCF.Furthermore,compared with meteorological factors,a variation of 46.53%in spring surface runoff can be attributed to changes in spring SCF.At the annual scale,temperature and relative humidity were the most important drivers of SCF change.An increase in temperature exceeding 0.04°C/a was observed to result in a decline in SCF,with a maximum decrease of 0.22%/a.An increase in relative humidity of more than 0.02%/a stabilized the rise in SCF(about 0.06%/a).The impacts of slope and aspect were found to be minimal.At the seasonal scale,the primary factors impacting SCF change varied.In spring,precipitation and wind speed emerged as the primary drivers.In autumn,precipitation and temperature were identified as the primary drivers.In winter,relative humidity and precipitation were the most important drivers.In contrast to the other seasons,slope exerted the strongest influence on SCF change in summer.This study facilitates a detailed quantitative description of SCF change in the QLM,enhancing the effectiveness of watershed water resource management and ecological conservation efforts in this region.
文摘Tropical lakes such as Lake Sentarum in Kalimantan,Indonesia,represent ecologically rich ecosystems with high biodiversity and constitute the largest lake on the island of Kalimantan.This lake serves as a sensitive indicator of climate change;however,its monitoring is often hindered by persistent cloud cover.This study evaluates the effectiveness of a Gradient Tree Boosting machine learning model integrated with multisource satellite data,including optical imagery,Sentinel-1 SAR,Sentinel-2,and high resolution NICFI data,in accurately mapping surface water dynamics.The Gradient Tree Boosting model was trained and validated using water and non water samples collected from annual imagery spanning 2019 to 2024,achieving validation accuracies ranging from 80 percent to 97 percent.Results demonstrate that Gradient Tree Boosting successfully integrates the strengths of each sensor,producing consistent annual water maps despite extreme hydrological fluctuations caused by El Nino and La Nina events.These findings highlight the model’s potential application in water resource man-agement,particularly in providing accurate baseline data to support adaptation planning for droughts and floods in climate vulnerable regions.
基金funded primarily by the Central Public Welfare Research Institutes Basic Research Business Funds to Support the Administration’s Central Work Project(Grant No.CAFYBB2023ZA003-4)the National Natural Science Foundation of China(Grant Nos.31170593 and 31570633)National Forestry and Grassland Administration Forestry Under the Project“Forestry Major Issues Research”(Grant Nos.500102-1776 and 500102-5110).
文摘Understanding the influencing factors of ecosystem services(ESs)and their relationships is essential for sustainable ecosystem management in degraded alpine ecosystems.There is a lack of integrated multi-model approaches to explore the multidimensional influences on ESs and their relationships in alpine ecosystems.Taking the Daxing'anling forest area,Inner Mongolia(DFAIM)as a case study,this study used the integrated valuation of ecosystem services and trade-offs(InVEST)model to quantify four ESs—soil conservation(SC),water yield(WY),carbon storage(CS),and habitat quality(HQ)—from 2013 to 2018.We adopted root mean square deviation(RMSD)and coupling coordination degree models(CCDM)to analyze their relationships,and integrated three complementary approaches—optimal parameter-based geographical detector model(OPGDM),gradient boosting regression tree model(GBRTM),and quantile regression model(QRM)—to reveal multidimensional influencing factors.Key findings include the following:(1)From 2013 to 2018,WY,SC,and HQ declined while CS increased.WY was primarily influenced by mean annual precipitation(MAP),forest ratio(RF),and soil bulk density(SBD);CS and HQ by RF and population density(PD);and SC by slope(S),RF,and MAP.Mean annual temperature(MAT),gross domestic product(GDP),and road network density(RND)showed increasing negative impacts.(2)Low trade-off intensity(TI<0.15)dominated all ES pairs,with RF,MAP,PD,and normalized difference vegetation index(NDVI)being the dominant factors.The factor interactions primarily showed two-factor enhancement patterns.(3)The average coupling coordination degree(CCD)of the four ESs was low and declined over time,with low-CCD areas becoming increasingly prevalent.RF,S,SBD,and NDVI positively influenced CCD,while PD,MAT,GDP,and RND had increasing negative impacts,with over 62%of the factor interactions exceeding the individual factor effects.In summary,ES supply generally decreased.Local relationships showed moderate coordination,while overall relationships indicated primary dysfunction.Land use and natural factors primarily shaped these ES and their relationships,while climate and socioeconomic changes diminished ES supply and intensified competition.We recommend enhancing the resilience of natural systems rather than replacing them,establishing climate adaptation monitoring systems,and promoting conservation tillage and cross-departmental coordination mechanisms for collaborative ES optimization.These results provide valuable insights into the sustainable management of alpine ecosystems.
基金supported by Key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059)Natural Science Foundation Committee Program of China(No.51778474)Science and Technology Project of Yunnan Provincial Transportation Department(No.25 of 2018)。
文摘This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.
文摘红绿灯位置是道路上行人和车辆的交会点,极大影响着道路结构和交通运行,在城市路网中起着重要的枢纽作用。针对目前红绿灯位置检测方法准确率不够高、覆盖面区域不完整等问题,提出了一种基于轨迹数据的交通灯位置检测方法。该方法基于聚类-合并-分类-合并的四级模型,首先从清理过的轨迹数据中提取隐含的车辆行驶特征,再采用具有噪声的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)方法得到转向和停驻两类聚类中心,对这两类聚类中心进行合并,获得红绿灯位置的候选位置;根据候选位置一定范围内的轨迹点提取该区域的车流行驶特征,然后采用梯度提升决策树(gradient boosting decision tree,GBDT)算法进行分类,最后将候选位置的正样本融合,以检测红绿灯位置。采用成都市浮动车GPS轨迹数据进行实验,检测结果的F1分数为0.947,效果优于常规的机器学习方法。实验结果表明,基于GPS轨迹数据,采用提出的四层模型能有效检测出红绿灯的位置,该模型可被用于城市大范围红绿灯位置信息的快速获取和更新。
文摘Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even death. Curing epilepsy requires risky surgery. If not, the patient may be subjected to a long drug treatment associated with lifestyle advice without guarantee of total recovery. However, regardless of the type of treatment performed, late treatment necessarily creates psychological instability in the patient. It is therefore important to be able to diagnose the disease as early as possible if we desire that the patient does not suffer from its consequences on their mental health. That is why the study aims to propose a model for detecting epilepsy in order to be able to identify it as early as possible, especially in newborns. The objective of the article is to propose a model for detecting epilepsy using data from electroencephalogram signals from 10 newborns. This model developed using the extra trees classifier technique offers the possibility of predicting epilepsy in infants with an accuracy of around 99.4%.