Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is ani...Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.展开更多
Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies s...Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and ...This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.展开更多
In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation....In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation.The proposed model is mainly inspired by the functional derivative of an adaptive total variation regularizer whose minimizer is expected to be able to effectively preserve the desired object boundary.More specifically,by incorporating an additional advection term into the usual gradient vector flow model,the resulting external force can much better help the active contour to recover missing edges,to converge to a narrow and deep concavity,and to preserve weak edges.Numerical experiments are performed to demonstrate the high performance of the newly proposed model.展开更多
In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model ca...In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.展开更多
The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation ...The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.展开更多
随着电网中新能源渗透率的增加,传统火电机组调频已无法满足电能质量需求。针对多源场景中传统自动发电控制系统区域控制误差较大的问题,提出一种基于Stackelberg博弈与改进深度神经网络(Stackelberg game and improved deep neural net...随着电网中新能源渗透率的增加,传统火电机组调频已无法满足电能质量需求。针对多源场景中传统自动发电控制系统区域控制误差较大的问题,提出一种基于Stackelberg博弈与改进深度神经网络(Stackelberg game and improved deep neural network,S-DNN)的多源调频协调策略。首先,设计一种改进多层次深度神经网络(deep neural network,DNN),由DNN层、自然梯度提升层、最小二乘支持向量机层顺序递进完成预测、评价、执行动作,输出总调频功率指令。该多层次总调频功率输出模型考虑新能源渗透率对调频系统的动态影响,充分学习历史信息与实时状态中更多的特征,提高了时序调频指令精度。然后基于Stackelberg博弈理论,考虑多源调频特征与协同作用,优化各调频源间的功率分配,提高系统二次调频的经济性。最后,通过算例分析验证了提出的多源调频协调策略的有效性。与传统调频方法相比,所提出的S-DNN多源调频协调策略可有效降低区域控制误差与频率偏差,并降低调频成本。展开更多
基金Supported by the National Natural Science Foundation of China(60805004)the State Key Lab of Space Medicine Fundamen-tals and Application(SMFA09A16)
文摘Gradient vector flow (GVF) is an effective external force for active contours, but its iso- tropic nature handicaps its performance. The recently proposed gradient vector flow in the normal direction (NGVF) is anisotropic since it only keeps the diffusion along the normal direction of the isophotes; however, it has difficulties forcing a snake into long, thin boundary indentations. In this paper, a novel external force for active contours called normally generalized gradient vector flow (NGGVF) is proposed, which generalizes the NGVF formulation to include two spatially varying weighting functions. Consequently, the proposed NGGVF snake is anisotropic and would improve ac- tive contour convergence into long, thin boundary indentations while maintaining other desirable properties of the NGVF snake, such as enlarged capture range, initialization insensitivity and good convergence at concavities. The advantages on synthetic and real images are demonstrated.
基金the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.62006193in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016。
文摘Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.
文摘This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.
基金supported by the Ministry of Science and Technology of Taiwan under grants MOST 106-2115-M-005-005-MY2(Po-Wen Hsieh),MOST 107-2811-M-008-007(Pei-Chiang Shao)MOST 106-2115-M-008-014-MY2(Suh-Yuh Yang).
文摘In this paper,we propose a new gradient vector flow model with advection enhancement,called advection-enhanced gradient vector flow,for calculating the external force employed in the active-contour image segmentation.The proposed model is mainly inspired by the functional derivative of an adaptive total variation regularizer whose minimizer is expected to be able to effectively preserve the desired object boundary.More specifically,by incorporating an additional advection term into the usual gradient vector flow model,the resulting external force can much better help the active contour to recover missing edges,to converge to a narrow and deep concavity,and to preserve weak edges.Numerical experiments are performed to demonstrate the high performance of the newly proposed model.
文摘In this paper, we propose a fast centerline extraction method to be used for gradient and direction vector flow of active contours. The gradient and direction vector flow is a recently reported active contour model capable of significantly improving the image segmentation performance especially for complex object shape, by seamlessly integrating gradient vector flow and prior directional information. Since the prior directional information is provided by manual line drawing, it can be inconvenient for inexperienced users who might have difficulty in finding the best place to draw the directional lines to achieve the best segmentation performance. This paper describes a method to overcome this problem by automatically extracting centerlines to guide the users for providing the right directional information. Experimental results on synthetic and real images demonstrate the feasibility of the proposed method.
基金Supported by the National Natural Science Foundation of China(6 95 710 2 0 ) and the Research Fund for the Doctoral Program of H
文摘The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.
文摘随着电网中新能源渗透率的增加,传统火电机组调频已无法满足电能质量需求。针对多源场景中传统自动发电控制系统区域控制误差较大的问题,提出一种基于Stackelberg博弈与改进深度神经网络(Stackelberg game and improved deep neural network,S-DNN)的多源调频协调策略。首先,设计一种改进多层次深度神经网络(deep neural network,DNN),由DNN层、自然梯度提升层、最小二乘支持向量机层顺序递进完成预测、评价、执行动作,输出总调频功率指令。该多层次总调频功率输出模型考虑新能源渗透率对调频系统的动态影响,充分学习历史信息与实时状态中更多的特征,提高了时序调频指令精度。然后基于Stackelberg博弈理论,考虑多源调频特征与协同作用,优化各调频源间的功率分配,提高系统二次调频的经济性。最后,通过算例分析验证了提出的多源调频协调策略的有效性。与传统调频方法相比,所提出的S-DNN多源调频协调策略可有效降低区域控制误差与频率偏差,并降低调频成本。