In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale...In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.展开更多
Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and im...Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.展开更多
In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions a...In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions and choices of the parameters are given. The global convergence of the method is proved. Further more,some well known gradient projection type algorithms [1-15] and new gradient projection type algorithms from the linear system are given in this paper.展开更多
A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable...A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.展开更多
In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov an...In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.展开更多
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of comput...In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.展开更多
In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm...In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.展开更多
A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active se...A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.展开更多
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f...A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.展开更多
Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current resea...Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.展开更多
Driven by the increase in CO_(2)concentration,climate models reach a consensus that the large-scale circulation of the South Asian summer monsoon(SASM) becomes weakened but with different magnitudes.This study investi...Driven by the increase in CO_(2)concentration,climate models reach a consensus that the large-scale circulation of the South Asian summer monsoon(SASM) becomes weakened but with different magnitudes.This study investigates the major uncertainty sources of the SASM response to an abrupt quadrupling of CO_(2)(abrupt-4×CO_(2))in 18 models of phase 6 of the Coupled Model Intercomparison Project.The projected weakening of the SASM indicated by both zonal and meridional monsoon circulation indices is closely linked to decreases in the meridional gradient of upper-tropospheric temperature between Eurasia and the Indian Ocean(EUTT-IUTT).A climate feedback-response analysis method is applied to linearly decompose the uncertainty of changes in EUTT-IUTT into the partial changes due to external forcing and internal processes of the earth-atmosphere column.Results show that the uncertainty of changes in EUTT-IUTT is contributed positively by the dominant atmospheric dynamic process,followed by the cloud shortwave radiative effect,and negatively by the surface latent heat flux and cloud longwave radiative effect.Contributions from CO_(2)forcing and other internal processes including albedo and water vapor feedbacks,oceanic heat storage,and sensible heat flux are found to be minor.展开更多
In this paper,we present a family of gradient projection method with arbitrary initialpoint.The formula of search direction in the method is unitary.The convergent conditions ofthe method are given.When the initial po...In this paper,we present a family of gradient projection method with arbitrary initialpoint.The formula of search direction in the method is unitary.The convergent conditions ofthe method are given.When the initial point is feasible,the family of the method contains severalknown algorithms.When the initial point is infeasible,the method is exactly that given in[6].Finally,we give a new method which has global convergence property.展开更多
In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective functi...In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.展开更多
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金The subject is supported by Natural Science Foundation of China and Natural Science Foundation of Shandong Province.
文摘In this paper, by using a new projection, we construct a variant of Zhang’s algorithm and prove its convergence. Specially, the variant of Zhang’s algorithm has quadratic termination and superlinear convergence rale under certain conditions. Zhang’s algorithm hasn’t these properties.
文摘Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.
文摘In this paper,a probe method for nonlinear programming wiht equality and inequality is given. Its iterative directions at an arbitrary point x can be obtained through solving a liear system. The terminate conditions and choices of the parameters are given. The global convergence of the method is proved. Further more,some well known gradient projection type algorithms [1-15] and new gradient projection type algorithms from the linear system are given in this paper.
基金Project supported by the Science and Technology Foundation of Sichuan Province (No.05GG006- 006-2)the Research Fund for the Introducing Intelligence of University of Electronic Science and Technology of China
文摘A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations is derived based on local projections. The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition. An error estimate is Obtained.
文摘In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.
基金Supported by the National Natural Science Foundation of China (10871130)the Research Fund for the Doctoral Program of Higher Education of China (20093127110005)the Scientific Computing Key Laboratory of Shanghai Universities
文摘In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.
文摘In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.
基金This research was supported by Chinese NNSF grant and NSF grant of Jiangsu Province
文摘A subspace projected conjugate gradient method is proposed for solving large bound constrained quadratic programming. The conjugate gradient method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At every iterative level, the search direction consists of two parts, one of which is a subspace trumcated Newton direction, another is a modified gradient direction. With the projected search the algorithm is suitable to large problems. The convergence of the method is proved and same numerical tests with dimensions ranging from 5000 to 20000 are given.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.
基金Project supported by the National Natural Science Foundation of China (Nos. 59805001 and 10332010) and the KeyScience and Technology Research Project of Ministry of Education of China (No. 104060).
文摘Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.
基金jointly supported by the National Natural Science Foundation of China [grant numbers 4208810141911540470+3 种基金42075028]the Guangdong Major Project of Basic and Applied Basic Research [grant number 2020B0301030004]the Natural Science Foundation of Guangdong Province of China [grant number 2018A0303130268]the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies [grant number2020B1212060025]。
文摘Driven by the increase in CO_(2)concentration,climate models reach a consensus that the large-scale circulation of the South Asian summer monsoon(SASM) becomes weakened but with different magnitudes.This study investigates the major uncertainty sources of the SASM response to an abrupt quadrupling of CO_(2)(abrupt-4×CO_(2))in 18 models of phase 6 of the Coupled Model Intercomparison Project.The projected weakening of the SASM indicated by both zonal and meridional monsoon circulation indices is closely linked to decreases in the meridional gradient of upper-tropospheric temperature between Eurasia and the Indian Ocean(EUTT-IUTT).A climate feedback-response analysis method is applied to linearly decompose the uncertainty of changes in EUTT-IUTT into the partial changes due to external forcing and internal processes of the earth-atmosphere column.Results show that the uncertainty of changes in EUTT-IUTT is contributed positively by the dominant atmospheric dynamic process,followed by the cloud shortwave radiative effect,and negatively by the surface latent heat flux and cloud longwave radiative effect.Contributions from CO_(2)forcing and other internal processes including albedo and water vapor feedbacks,oceanic heat storage,and sensible heat flux are found to be minor.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper,we present a family of gradient projection method with arbitrary initialpoint.The formula of search direction in the method is unitary.The convergent conditions ofthe method are given.When the initial point is feasible,the family of the method contains severalknown algorithms.When the initial point is infeasible,the method is exactly that given in[6].Finally,we give a new method which has global convergence property.
基金The research was in part supported by the National Natural Science Foundation of China (70471002,10571106) NCET040098.
文摘In this paper, we give some convergence results on the gradient projection method with exact stepsize rule for solving the minimization problem with convex constraints. Especially, we show that if the objective function is convex and its gradient is Lipschitz continuous, then the whole sequence of iterations produced by this method with bounded exact stepsizes converges to a solution of the concerned problem.