Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradien...Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradient invariants in existing research is seldom a concern.The gravity gradient tensor has three invariants,named as I_(1),I_(2)and I_(3).I_(1) is a Laplace operator outside the Earth and a Poison operator inside the Earth.The focus of this study is to discuss the performance of the other two invariants of gravity gradients in matching navigation based on the Iterative Closest Contour Point(ICCP)algorithm and compare the matching results with that of the gravity gradient Tzz.The results show that they have almost the same performance when there is no noise,and the background data noises have a large impact on the matching results.There are differences in the anti-interference ability of observation noises for the different components.Under the same random noises in the observations,I2performs a little better than the other two components in terms of position error standard deviation.According to the investigations,since attitude errors can not be avoided and influence the positioning based on Tzz,we recommend adopting invariants of gravity gradients,especially I2,for matching navigation in actual cases.展开更多
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to...Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others, these results show that our proposed model and algorithms are effective.展开更多
A mathematical model for insertion loss in a micro-perforated muffler with the effects of temperature gradient, gas flow speed and structure parameter is obtained by the mode matching technique. By dividing the microp...A mathematical model for insertion loss in a micro-perforated muffler with the effects of temperature gradient, gas flow speed and structure parameter is obtained by the mode matching technique. By dividing the microperforated tube into N segments, and assuming the flow speed and temperature are constant in each element, sound pressure and volume velocity of each segment can be readily acquired. The transmission matrix of microperforated muffler can be established based on the continuity condition of adjacent elements on the boundary. The numerical results of the present theory are calculated and the experiment is performed in Shanghai-495A engine. The experimental results of microperforated muffler show that they are in good agreement with the theoretical results.展开更多
基金funded by the Key Laboratory of Smart Earth(No.KF2023YB01-12)the National Natural Science Foundation of China(No.42074017)+1 种基金the Key Laboratory Fund Project for Simulation of Complex Electronic Systems(614201004022210)the Chinese Academy of Sciences Youth Innovation Promotion Association(2022126)。
文摘Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradient invariants in existing research is seldom a concern.The gravity gradient tensor has three invariants,named as I_(1),I_(2)and I_(3).I_(1) is a Laplace operator outside the Earth and a Poison operator inside the Earth.The focus of this study is to discuss the performance of the other two invariants of gravity gradients in matching navigation based on the Iterative Closest Contour Point(ICCP)algorithm and compare the matching results with that of the gravity gradient Tzz.The results show that they have almost the same performance when there is no noise,and the background data noises have a large impact on the matching results.There are differences in the anti-interference ability of observation noises for the different components.Under the same random noises in the observations,I2performs a little better than the other two components in terms of position error standard deviation.According to the investigations,since attitude errors can not be avoided and influence the positioning based on Tzz,we recommend adopting invariants of gravity gradients,especially I2,for matching navigation in actual cases.
基金Supported in part by the NNSF of China(11301129,11271323,91330105,11326033)the Zhejiang Provincial Natural Science Foundation of China(LQ13A010025,LZ13A010002)
文摘Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others, these results show that our proposed model and algorithms are effective.
文摘A mathematical model for insertion loss in a micro-perforated muffler with the effects of temperature gradient, gas flow speed and structure parameter is obtained by the mode matching technique. By dividing the microperforated tube into N segments, and assuming the flow speed and temperature are constant in each element, sound pressure and volume velocity of each segment can be readily acquired. The transmission matrix of microperforated muffler can be established based on the continuity condition of adjacent elements on the boundary. The numerical results of the present theory are calculated and the experiment is performed in Shanghai-495A engine. The experimental results of microperforated muffler show that they are in good agreement with the theoretical results.