Backfilling is a common practice in the mining industry and the backfilling performance plays a significant role in supporting the surrounding rock mass.To evaluate the backfilling performance,an experimental apparatu...Backfilling is a common practice in the mining industry and the backfilling performance plays a significant role in supporting the surrounding rock mass.To evaluate the backfilling performance,an experimental apparatus has been developed to understand how backfill affects the compressive strength of sandstone specimens in the laboratory.Pebbles were selected to model the backfill and divided into six groups with different particle sizes using a set of standard sieves.The backfilling pebbles with three types of particle size compositions were then produced,i.e.single gradation,two adjacent gradations,and increasingly widening gradations.A series of compressive tests were carried out to study the mechanical behavior of the sandstone specimens confined by these pebbles.The effects of the gradations of the filled pebbles on the peak and residual compressive strengths were analyzed.It is found that the increasing amount of the compressive strength is over 10%in most cases,even up to 20%.Based on the experiment data,the increasing amount was also estimated theoretically under some assumptions and it further confirmed the experimental results.The effects are closely related to the gradations of the filled pebbles except for their dense degree.展开更多
By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics...By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics of tangent Poisson ratio curves were summarized and the reason was revealed by dividing the movement of soil particles into two kinds: the movement of fine particles and the movement of coarse particles.Then,a volumetric strain expression and a tangent Poisson ratio expression were put forward,and two defects of widely used Duncan-Chang model were fixed.Results calculated from them agree well with test results.There are three parameters,namely L,G and F,in this new model.Parameter L reflects the dilatancy of a specimen and L=4 can be used as a criterion to estimate whether a certain kind of soil has dilatancy quality or not.Parameters G and F relate to the initial slope of tangent Poisson ratio curves,and G=F=0 indicates a special situation which happens in dense granular material of the same diameter.Influences of various gradations on volume deformation are mainly reflected in parameter L which is smaller when there are more gravels in specimens.展开更多
Stone matrix asphalt (SMA) is a gap-graded bituminous mixture which can be used in surface layer of high volume pavements. The mixture has higher concen- trations of coarse aggregates, providing strength and rut res...Stone matrix asphalt (SMA) is a gap-graded bituminous mixture which can be used in surface layer of high volume pavements. The mixture has higher concen- trations of coarse aggregates, providing strength and rut resistance to the mixture, and higher asphalt content giving durability. There must be a proper stone-to-stone contact between the coarse aggregates of SMA, and hence aggre- gate gradation is an important factor in this mixture. In the current study, two aggregate gradations, with nominal maximum aggregate sizes (NMAS) 16 and 13 mm were adopted to prepare SMA mixtures and their laboratory performances were compared. Polymer-modified bitumen (PMB) was used as the binder material and no stabilising additive was used, since drain down was within permissible limits for both mixtures with PMB. Conventional cylin- drical specimens were prepared in superpave gyratory compactor with bitumen contents 5.0 %, 5.5 %, 6.0 %, 6.5 % and 7.0 % by weight of aggregates, and volumetric and Marshall properties were determined. Tensile strength, behaviour to repeated loading etc. were checked for cylindrical specimens prepared at optimum bitumen con- tent, whereas specially prepared slab specimens were used to check the rutting resistance of SMA mixtures. From the laboratory study, it was observed that, out of the two SMA mixtures, the one with NMAS 16 mm performed better compared to the other. These improved properties may be attributed towards the larger coarse aggregate sizes in the mixture.展开更多
The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to i...The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.展开更多
The permanent deformation (rutting) of pavement is a major distress in flexible pavement. It is related to vehicles properties and/or pavement materials and conditions. This article presents an extensive experimental ...The permanent deformation (rutting) of pavement is a major distress in flexible pavement. It is related to vehicles properties and/or pavement materials and conditions. This article presents an extensive experimental investigation in order to compare between the aggregate gradation according to Superpave and Marshall methods of asphalt concrete mix design on pavement rutting and to examine the sensitivity of rutting resistance to aggregate gradation. A wheel truck machine has been used for measurement of pavement rutting (permanent deformation). The tests were carried out at two controlled different air temperature 55℃ and 25℃. The results obtained showed that the adopting of aggregate gradation procedure of Superpave method of pavement mix design for Marshall method of asphalt concrete mix design can reduce the pavement rutting by about 50%. This achievement may be related to missing of three sieves in aggregate gradation procedure of Marshall method which controls rounded and finer aggregate particles. These sieves provide more continuity for aggregate gradation to ensure filling unnecessary gaps and produce more contact points between the aggregates in Hot Mix Asphalt (HMA). The outputs of the research support modifying Marshall method of asphalt concrete mix design by adopting aggregate gradation proposed in Superpave method. The results of study also showed that the coarser aggregate provided more resistance to pavement rutting.展开更多
The issue of top contact in paste backfill materials is a common technical challenge in coal mine filling processes,and overcoming this problem has become a significant research direction in current studies and engine...The issue of top contact in paste backfill materials is a common technical challenge in coal mine filling processes,and overcoming this problem has become a significant research direction in current studies and engineering practices.This paper utilizes coal gangue as aggregate and hydrogen peroxide as a foaming agent to prepare foamed paste backfill materials.Three close-packing theories were employed to investigate the effects of different coal gangue particle gradations on the mechanical properties,expansion ratio,water absorption,and dry density of foamed paste backfill materials under the same foaming agent content.The hydration mechanism and pore structure evolution were analyzed using XRD,SEM,and OSM techniques.The results indicate that when the hydrogen peroxide addition is 5%,the foamed paste backfill material regulated by MAA gradation theory exhibits the best comprehensive performance,achieving a 28-day compressive strength of 0.89 MPa,an expansion ratio of 155.5%,and a dry density of 1.24 g/cm^(3).The regulation of coal gangue aggregate particle gradation not only improves the foaming efficiency but also allows the formation of CH to fill the material pores,enhancing the overall structural support capacity and forming a closer microstructure.This research provides new insights into controlling the properties of foamed paste backfill materials.展开更多
This paper is a continuation of [2]. We prove Conjecture 5.1 of [2] which gives a characterization of simple Lie algebras of finite dimension of type B2e, C2e, D2e+1, E7 and Es in terms of some gradations of these al...This paper is a continuation of [2]. We prove Conjecture 5.1 of [2] which gives a characterization of simple Lie algebras of finite dimension of type B2e, C2e, D2e+1, E7 and Es in terms of some gradations of these algebras over a field of characteristic 2.展开更多
The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with diffe...The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with different particle sizes(YMF or YMX)was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism.The results showed that the fixed viscosity concentration of coal-water slurry(CYWS)with YM was only 47.42%,and the flowability was 49.9 mm,which made the slurry performance poor.The fixed viscosity concentration of coal-water slurry(CFWS)blended with YMF and coal-water slurry(CXWS)blended with YMX increased by 10.41%and 14.24%,respectively,compared with CYWS.Meanwhile,CXWS had the lowest thixotropy and yield stress,with a yield stress of only 16.13 Pa,which was 77.31 Pa lower than that of CYWS.This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry.This is due to the enhanced hydrophilicity and electronegativity of YMX.The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry,while the enhanced electronegativity improves the electrostatic repulsion between particles,which is beneficial to the dispersion of particles.In the subsequent EDLVO analyses,the same idea was proved.展开更多
In order to improve the efficient and high-value recycling utilization rate of waste red bricks from construction waste,this study crushed and ground the waste red bricks to produce recycled brick powder(RBP)with diff...In order to improve the efficient and high-value recycling utilization rate of waste red bricks from construction waste,this study crushed and ground the waste red bricks to produce recycled brick powder(RBP)with different fineness,used the Andreasen model to explore the influence of RBP on the compact filling effect of cementitious material system based on the basic characteristics of RBP.The influence of grinding time(10,20,30 min)and content(0%,5%,10%,15%,20%)of RBP on the macroscopic mechanical properties of cementitious materials was investigated.We analyzed the significant impact of RBP particle characteristics on the compressive strength of the specimen with the aid of grey entropy theory,and revealed the influence mechanism of RBP on the microstructure of cementitious materials by scanning electron microscope(SEM)and nuclear magnetic resonance(NMR).The results show that the fineness of RBP after grinding is smaller than that of cement.The fineness of recycled brick powder increases gradually with the extension of grinding time,which is manifested as the increase of<3μm particles and the decrease of>18μm particles.Compared with the unitary cement cementitious material system,the particle gradation of the RBP-cement binary cementitious material system is closer to the closest packing state.With the increase of RBP content and grinding time,the compactness of the binary cementitious system gradually decreases,indicating that the incorporation of RBP reduces the mechanical strength of the specimen.The results of grey entropy show that the specific surface area D(0.1)and<45μm particles are the significant factors affecting the mechanical properties of cementitious materials mixed with RBP.RBP mainly affects the macroscopic properties of cementitious materials by affecting the internal compactness,the number of hydration products and the pore structure.The results of SEM show that when the RBP content is less than 15%,the content of C-S-H in cement paste increase,and the content of Ca(OH)2 decreases,and the content of C-S-H decreases and the content of Ca(OH)2 increases when the RBP content is more than 15%.The NMR results show that with the extension of grinding time,the pore size of micropore increases gradually,that of middle-small pores decreases gradually,and that of large pores remains unchanged.With the increase of RBP content,the micropores first decrease and then increase,and the middle-small pores and large pores gradually decrease.In summary,the compactness of cementitious material system can be improved by adjusting the fineness of RBP.Considering the performance of cementitious materials and the utilization rate of RBP,it is recommended that the grinding time of RBP is 20 min and the content is 10%-15%.展开更多
The formation process of blasting craters and blasting fragments is simulated using the continuumdiscontinuum element method(CDEM),providing a reference for blasting engineering design.The calculation model of the bla...The formation process of blasting craters and blasting fragments is simulated using the continuumdiscontinuum element method(CDEM),providing a reference for blasting engineering design.The calculation model of the blasting funnel is established,and the formation and fragmentation effect of the blasting crater under different explosive burial depths and different explosive package masses are numerically simulated.The propagation law of the explosion stress wave and the formation mechanism of the blasting crater are studied,and the relationship between the rock-crushing effect and blasting design parameters is quantitatively evaluated.Comparing the results of numerical simulation with the results of field tests and theoretical calculations indicated that the three are consistent,which proves the accuracy of numerical simulation.The results showed that the area of the blasting crater rises with the increase of explosive package mass and explosive burial depth.Taking the proportion of broken blocks with particle size ranging from 0.01 to 0.1 m as the research object,it can be found that the proportion of broken blocks with an explosive burial depth of 0.62 to 1.12 m is 0.45 to 0.18 times that with an explosive burial depth of 0.5 m.The proportion of broken blocks with an explosive radius of 4 to 12 cm is 1.14 to 3.29 times that with an explosive radius of 2 cm.The quantitative analysis of the blasting effect and blasting design parameters provides guidance for the design of blasting engineering.展开更多
We optimized the gradation of cold recycled mixture(CRM)based on low-temperature performance.Firstly,the low-temperature crack resistance of CRM with different gradation and emulsified asphalt content was studied by i...We optimized the gradation of cold recycled mixture(CRM)based on low-temperature performance.Firstly,the low-temperature crack resistance of CRM with different gradation and emulsified asphalt content was studied by indirect tension(IDT)and semi-circular bending(SCB)test.Thereafter,the low-temperature performance evaluation index suitable for CRM was put forward.Then,the triangular coordinate statistical chart was used to analyze the optimal proportion of three grades of aggregate which are 2.36-4.75 mm,0.075-2.36 mm and below 0.075 mm.The results showed that the W_(f) and G_(f) could distinguish the low-temperature performance of CRM with different mixtures and emulsified asphalt dosage.For cold recycled fine aggregate,2.36-4.75 mm,0.075-2.36 mm and less than 0.075 mm account for 20%-25%,74.3%-80%and 5%-8%,respectively.The CRM with lower void fraction,higher W_(f) and G_(f) could be obtained.Based on the reported findings,it was suggested that the sieve passing percentage of 4.75,2.36,and 0.075 mm of CRM is 45%-55%,27%-52%and 1.5%-5%,respectively.展开更多
Current mix design practices typically assume total blending and use the white curve of reclaimed asphalt pavement(RAP)to determine the gradation and optimum asphalt content(OAC)of recycled hot mix asphalt(HMA),often ...Current mix design practices typically assume total blending and use the white curve of reclaimed asphalt pavement(RAP)to determine the gradation and optimum asphalt content(OAC)of recycled hot mix asphalt(HMA),often overlooking the effects of RAP agglomeration and partial blending.This oversight can result in unsatisfactory performance,particularly when higher RAP content is used.Therefore,this paper reviews and discusses strategies for adjusting the mix design of recycled HMA to enhance its in-service performance.The discussion begins with RAP particle agglomeration,a significant phenomenon that significantly impacts the aggregate gradation of recycled HMA.Subsequently,detection methods to clarify the blending between virgin and RAP binders are described.Partial blending between RAP and virgin binders is common,and various indexes have been proposed to quantify the blending degree.Finally,the adjusted mix design method of recycled HMA is presented,emphasizing gradation optimization and corrected OAC.Gradation optimization should account for RAP agglomeration,while the corrected OAC should consider particle blending.Recycled HMA using the adjusted mix design exhibits improved crack resistance and fatigue life without substantially impairing rutting performance.This review aims to help both academics and highway agencies maximize the utilization of RAP materials within sustainable pavement frameworks.展开更多
A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with ...A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.展开更多
A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and t...A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.展开更多
Taking B District in A City as an example, quality classification of basic farmland was evaluated based on farmland gradation. It can be concluded from the analysis that utilization grade of basic farmland in current ...Taking B District in A City as an example, quality classification of basic farmland was evaluated based on farmland gradation. It can be concluded from the analysis that utilization grade of basic farmland in current round was 16.82 without consideration of farmland gradation updating, and the grade enhanced by 0.08, still lower by 0.11 than that in last round, when the updating was taken into account. Finally, the reasons for problems occurred in the round were analyzed as follows: less consideration of protection on basic farmland in orientation of urban development; neglecting of basic farmland quality in Overall Plan of Land Utilization; non-classification of excellent lands after land consolidation; untimely updating of farmland gradation. In addition, the countermeasures were proposed correpondingly, including strengthening of basic farmland quality in the Plan, classification of excellent lands after consolidation, timely updating and inclusion of farmland gradation into "one map" project.展开更多
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)alumin...To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.展开更多
Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in formi...Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.展开更多
The shape characterization and spatial distribution of aggregate,mastic and air void phases for asphalt mixture were analyzed.Three air void percentage asphalt mixtures,4%,7% and 8%,respectively,were cut into cross se...The shape characterization and spatial distribution of aggregate,mastic and air void phases for asphalt mixture were analyzed.Three air void percentage asphalt mixtures,4%,7% and 8%,respectively,were cut into cross sections and polished.X-ray scanning microscope was used to capture aggregate,mastic,air void phase by the image.The average of polygon diameter was chosen as a threshold to determine which aggregates would be retained on a given sieve.The aggregate morphological image from scanned image was utilized by digital image processing method to calculate the gradation of aggregate and simulate the real gradation.Analysis result shows that the air void of asphalt mixture has influence on the correlation between calculation gradation and actual gradation.When comparing 4.75 mm sieve size of 4%,7% and 8% air void asphalt mixtures,7% air void asphalt mixture has 55% higher than actual size gradation,8% air void asphalt mixture has 8% higher than actual size gradation,and 4% air void asphalt mixture has 3.71% lower than actual size gradation.4% air void asphalt mixture has the best correlation between calculation gradation and actual gradation comparing to other specimens.The air void percentage of asphalt mixture has no obvious influence on the air void orientation,and three asphalt mixtures show the similar air orientation along the same direction.展开更多
The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropr...The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropriate inte- grated indicators influencing the classification and gradation of cultivated land quality in the southwestern mountainous area of China based on semi-structure interview, and to promote the monitoring of cultivated land quality in this region. Taking Bishan County of Chongqing as a study case, the integrated indicators involve the productivity, protection, ac- ceptability, and stability of cultivated land. The integrated indicators accord with the characteristics of land resources and human preference in southwestern mountainous area of China. In different agricultural zones, we emphasize different indicators, such as emphasizing productivity, stabilization and acceptability in low hilly and plain agricultural integrative zone (LHP-AIZ), protection, productivity and stability in low mountain and hill agro-forestry ecological zone (LMH-AEZ), and acceptability in plain outskirts integrative agricultural zone (PO-IAZ), respectively. The pronounced difference of classification and gradation of cultivated land, regardless of inter-region or intra-region, is observed, with the reducible rank from PO-IAZ, LHP-AIZ to LMH-AEZ. Research results accord with the characteristics of assets management and intensive utilization of cultivated land resources in the southwestern mountainous area of China. Semi-structure interview adequately presents the principal agent of farmers in agricultural land use and rural land market. This method is very effective and feasible to obtain data of the quality of cultivated land in the southwestern mountainous area of China.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFC0801602)the National Science Foundation of China(No.52074060)the Fundamental Research Funds for the Central Universities(Nos.N2101036 and N2101045)。
文摘Backfilling is a common practice in the mining industry and the backfilling performance plays a significant role in supporting the surrounding rock mass.To evaluate the backfilling performance,an experimental apparatus has been developed to understand how backfill affects the compressive strength of sandstone specimens in the laboratory.Pebbles were selected to model the backfill and divided into six groups with different particle sizes using a set of standard sieves.The backfilling pebbles with three types of particle size compositions were then produced,i.e.single gradation,two adjacent gradations,and increasingly widening gradations.A series of compressive tests were carried out to study the mechanical behavior of the sandstone specimens confined by these pebbles.The effects of the gradations of the filled pebbles on the peak and residual compressive strengths were analyzed.It is found that the increasing amount of the compressive strength is over 10%in most cases,even up to 20%.Based on the experiment data,the increasing amount was also estimated theoretically under some assumptions and it further confirmed the experimental results.The effects are closely related to the gradations of the filled pebbles except for their dense degree.
基金Project(50908233)supported by the National Natural Science Foundation of ChinaProject(2008G031-Q)supported by National Engineering Laboratory for High Speed Railway Construction,China
文摘By using large scale triaxial shearing apparatus,consolidated-drained shear tests were conducted on coarse-grained soil with different gradations.In order to describe their deformation rules,three main characteristics of tangent Poisson ratio curves were summarized and the reason was revealed by dividing the movement of soil particles into two kinds: the movement of fine particles and the movement of coarse particles.Then,a volumetric strain expression and a tangent Poisson ratio expression were put forward,and two defects of widely used Duncan-Chang model were fixed.Results calculated from them agree well with test results.There are three parameters,namely L,G and F,in this new model.Parameter L reflects the dilatancy of a specimen and L=4 can be used as a criterion to estimate whether a certain kind of soil has dilatancy quality or not.Parameters G and F relate to the initial slope of tangent Poisson ratio curves,and G=F=0 indicates a special situation which happens in dense granular material of the same diameter.Influences of various gradations on volume deformation are mainly reflected in parameter L which is smaller when there are more gravels in specimens.
文摘Stone matrix asphalt (SMA) is a gap-graded bituminous mixture which can be used in surface layer of high volume pavements. The mixture has higher concen- trations of coarse aggregates, providing strength and rut resistance to the mixture, and higher asphalt content giving durability. There must be a proper stone-to-stone contact between the coarse aggregates of SMA, and hence aggre- gate gradation is an important factor in this mixture. In the current study, two aggregate gradations, with nominal maximum aggregate sizes (NMAS) 16 and 13 mm were adopted to prepare SMA mixtures and their laboratory performances were compared. Polymer-modified bitumen (PMB) was used as the binder material and no stabilising additive was used, since drain down was within permissible limits for both mixtures with PMB. Conventional cylin- drical specimens were prepared in superpave gyratory compactor with bitumen contents 5.0 %, 5.5 %, 6.0 %, 6.5 % and 7.0 % by weight of aggregates, and volumetric and Marshall properties were determined. Tensile strength, behaviour to repeated loading etc. were checked for cylindrical specimens prepared at optimum bitumen con- tent, whereas specially prepared slab specimens were used to check the rutting resistance of SMA mixtures. From the laboratory study, it was observed that, out of the two SMA mixtures, the one with NMAS 16 mm performed better compared to the other. These improved properties may be attributed towards the larger coarse aggregate sizes in the mixture.
基金Funded by National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.
文摘The permanent deformation (rutting) of pavement is a major distress in flexible pavement. It is related to vehicles properties and/or pavement materials and conditions. This article presents an extensive experimental investigation in order to compare between the aggregate gradation according to Superpave and Marshall methods of asphalt concrete mix design on pavement rutting and to examine the sensitivity of rutting resistance to aggregate gradation. A wheel truck machine has been used for measurement of pavement rutting (permanent deformation). The tests were carried out at two controlled different air temperature 55℃ and 25℃. The results obtained showed that the adopting of aggregate gradation procedure of Superpave method of pavement mix design for Marshall method of asphalt concrete mix design can reduce the pavement rutting by about 50%. This achievement may be related to missing of three sieves in aggregate gradation procedure of Marshall method which controls rounded and finer aggregate particles. These sieves provide more continuity for aggregate gradation to ensure filling unnecessary gaps and produce more contact points between the aggregates in Hot Mix Asphalt (HMA). The outputs of the research support modifying Marshall method of asphalt concrete mix design by adopting aggregate gradation proposed in Superpave method. The results of study also showed that the coarser aggregate provided more resistance to pavement rutting.
基金National Natural Science Foundation of China(Project No.:U1905216).
文摘The issue of top contact in paste backfill materials is a common technical challenge in coal mine filling processes,and overcoming this problem has become a significant research direction in current studies and engineering practices.This paper utilizes coal gangue as aggregate and hydrogen peroxide as a foaming agent to prepare foamed paste backfill materials.Three close-packing theories were employed to investigate the effects of different coal gangue particle gradations on the mechanical properties,expansion ratio,water absorption,and dry density of foamed paste backfill materials under the same foaming agent content.The hydration mechanism and pore structure evolution were analyzed using XRD,SEM,and OSM techniques.The results indicate that when the hydrogen peroxide addition is 5%,the foamed paste backfill material regulated by MAA gradation theory exhibits the best comprehensive performance,achieving a 28-day compressive strength of 0.89 MPa,an expansion ratio of 155.5%,and a dry density of 1.24 g/cm^(3).The regulation of coal gangue aggregate particle gradation not only improves the foaming efficiency but also allows the formation of CH to fill the material pores,enhancing the overall structural support capacity and forming a closer microstructure.This research provides new insights into controlling the properties of foamed paste backfill materials.
文摘This paper is a continuation of [2]. We prove Conjecture 5.1 of [2] which gives a characterization of simple Lie algebras of finite dimension of type B2e, C2e, D2e+1, E7 and Es in terms of some gradations of these algebras over a field of characteristic 2.
基金support from the Scientific Research Foundation for the Introduction of Talent,Anhui University of Science and Technology(2023yjrc90)the Fundamental Research Funds of the AUST(2024JBQN0015)the Open Research Fund Program of Anhui Provincial Institute of Modern Coal Processing Technology,Anhui University of Science and Technology(MTY202302).
文摘The multipath application of green resources needs to be realised under the carbon neutrality goal.Worldwide,biomass is a resource in urgent need of treatment.In this paper,corn stover biomass(YM)or biochar with different particle sizes(YMF or YMX)was added during the preparation of coal-water slurry to investigate its effect on the performance of coal-water slurry and the micro-mechanism.The results showed that the fixed viscosity concentration of coal-water slurry(CYWS)with YM was only 47.42%,and the flowability was 49.9 mm,which made the slurry performance poor.The fixed viscosity concentration of coal-water slurry(CFWS)blended with YMF and coal-water slurry(CXWS)blended with YMX increased by 10.41%and 14.24%,respectively,compared with CYWS.Meanwhile,CXWS had the lowest thixotropy and yield stress,with a yield stress of only 16.13 Pa,which was 77.31 Pa lower than that of CYWS.This indicates that YMX treated by charring and milling is more favorable to be blended with coal to prepare coal-water slurry.This is due to the enhanced hydrophilicity and electronegativity of YMX.The enhanced hydrophilicity reduces the tendency to form three-dimensional networks in coal-water slurry,while the enhanced electronegativity improves the electrostatic repulsion between particles,which is beneficial to the dispersion of particles.In the subsequent EDLVO analyses,the same idea was proved.
基金Funded by National Natural Science Foundation of China(No.52108219)Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.062407)The High Quality of Green Machine-made Aggregate and the Evolution Mechanism of Concrete Life Cycle Performance in the Harsh Environment of Northwest China(No.U21A20150)。
文摘In order to improve the efficient and high-value recycling utilization rate of waste red bricks from construction waste,this study crushed and ground the waste red bricks to produce recycled brick powder(RBP)with different fineness,used the Andreasen model to explore the influence of RBP on the compact filling effect of cementitious material system based on the basic characteristics of RBP.The influence of grinding time(10,20,30 min)and content(0%,5%,10%,15%,20%)of RBP on the macroscopic mechanical properties of cementitious materials was investigated.We analyzed the significant impact of RBP particle characteristics on the compressive strength of the specimen with the aid of grey entropy theory,and revealed the influence mechanism of RBP on the microstructure of cementitious materials by scanning electron microscope(SEM)and nuclear magnetic resonance(NMR).The results show that the fineness of RBP after grinding is smaller than that of cement.The fineness of recycled brick powder increases gradually with the extension of grinding time,which is manifested as the increase of<3μm particles and the decrease of>18μm particles.Compared with the unitary cement cementitious material system,the particle gradation of the RBP-cement binary cementitious material system is closer to the closest packing state.With the increase of RBP content and grinding time,the compactness of the binary cementitious system gradually decreases,indicating that the incorporation of RBP reduces the mechanical strength of the specimen.The results of grey entropy show that the specific surface area D(0.1)and<45μm particles are the significant factors affecting the mechanical properties of cementitious materials mixed with RBP.RBP mainly affects the macroscopic properties of cementitious materials by affecting the internal compactness,the number of hydration products and the pore structure.The results of SEM show that when the RBP content is less than 15%,the content of C-S-H in cement paste increase,and the content of Ca(OH)2 decreases,and the content of C-S-H decreases and the content of Ca(OH)2 increases when the RBP content is more than 15%.The NMR results show that with the extension of grinding time,the pore size of micropore increases gradually,that of middle-small pores decreases gradually,and that of large pores remains unchanged.With the increase of RBP content,the micropores first decrease and then increase,and the middle-small pores and large pores gradually decrease.In summary,the compactness of cementitious material system can be improved by adjusting the fineness of RBP.Considering the performance of cementitious materials and the utilization rate of RBP,it is recommended that the grinding time of RBP is 20 min and the content is 10%-15%.
基金funded by the National Natural Science Foundation of China(Program Nos.52379128,52209162)Natural Science Foundation of Hubei Province of China(Program Nos.2023AFA048,2023AFB657)+3 种基金Hubei Provincial Key Laboratory of Construction and Management in Hydropower Engineering(Program Nos.2023KSD03,2023KSD04)Natural Science Research of Jiangsu Higher Education Institutions of China(Program No.21KJB580001)Educational Commission of Hubei Province of China(Program No.T2020005)the Young Top-Notch Talent Cultivation Program of Hubei Province.
文摘The formation process of blasting craters and blasting fragments is simulated using the continuumdiscontinuum element method(CDEM),providing a reference for blasting engineering design.The calculation model of the blasting funnel is established,and the formation and fragmentation effect of the blasting crater under different explosive burial depths and different explosive package masses are numerically simulated.The propagation law of the explosion stress wave and the formation mechanism of the blasting crater are studied,and the relationship between the rock-crushing effect and blasting design parameters is quantitatively evaluated.Comparing the results of numerical simulation with the results of field tests and theoretical calculations indicated that the three are consistent,which proves the accuracy of numerical simulation.The results showed that the area of the blasting crater rises with the increase of explosive package mass and explosive burial depth.Taking the proportion of broken blocks with particle size ranging from 0.01 to 0.1 m as the research object,it can be found that the proportion of broken blocks with an explosive burial depth of 0.62 to 1.12 m is 0.45 to 0.18 times that with an explosive burial depth of 0.5 m.The proportion of broken blocks with an explosive radius of 4 to 12 cm is 1.14 to 3.29 times that with an explosive radius of 2 cm.The quantitative analysis of the blasting effect and blasting design parameters provides guidance for the design of blasting engineering.
基金Funded by the Key Research and Development Plan of Jiangxi Province (No. 20223BBG74002)the Natural Science Foundation of China (Nos. 51778483, 51978521)the Fundamental Research Funds for the Central Universities (No. DUT24RC (3)100)。
文摘We optimized the gradation of cold recycled mixture(CRM)based on low-temperature performance.Firstly,the low-temperature crack resistance of CRM with different gradation and emulsified asphalt content was studied by indirect tension(IDT)and semi-circular bending(SCB)test.Thereafter,the low-temperature performance evaluation index suitable for CRM was put forward.Then,the triangular coordinate statistical chart was used to analyze the optimal proportion of three grades of aggregate which are 2.36-4.75 mm,0.075-2.36 mm and below 0.075 mm.The results showed that the W_(f) and G_(f) could distinguish the low-temperature performance of CRM with different mixtures and emulsified asphalt dosage.For cold recycled fine aggregate,2.36-4.75 mm,0.075-2.36 mm and less than 0.075 mm account for 20%-25%,74.3%-80%and 5%-8%,respectively.The CRM with lower void fraction,higher W_(f) and G_(f) could be obtained.Based on the reported findings,it was suggested that the sieve passing percentage of 4.75,2.36,and 0.075 mm of CRM is 45%-55%,27%-52%and 1.5%-5%,respectively.
基金sponsored by the National Natural Science Foundation of China(52178420,52408476)Special subsidy from Heilongjiang Provincial People's Government(HITTY-20190028)+1 种基金Postdoctoral Fellowship Program of CPSF(GZC20242207)the Fundamental Research Funds for the Central Universities(HIT.DZJJ.2023086).
文摘Current mix design practices typically assume total blending and use the white curve of reclaimed asphalt pavement(RAP)to determine the gradation and optimum asphalt content(OAC)of recycled hot mix asphalt(HMA),often overlooking the effects of RAP agglomeration and partial blending.This oversight can result in unsatisfactory performance,particularly when higher RAP content is used.Therefore,this paper reviews and discusses strategies for adjusting the mix design of recycled HMA to enhance its in-service performance.The discussion begins with RAP particle agglomeration,a significant phenomenon that significantly impacts the aggregate gradation of recycled HMA.Subsequently,detection methods to clarify the blending between virgin and RAP binders are described.Partial blending between RAP and virgin binders is common,and various indexes have been proposed to quantify the blending degree.Finally,the adjusted mix design method of recycled HMA is presented,emphasizing gradation optimization and corrected OAC.Gradation optimization should account for RAP agglomeration,while the corrected OAC should consider particle blending.Recycled HMA using the adjusted mix design exhibits improved crack resistance and fatigue life without substantially impairing rutting performance.This review aims to help both academics and highway agencies maximize the utilization of RAP materials within sustainable pavement frameworks.
基金Funded by the National Natural Science Foundation of China(No.U1904188)。
文摘A simplex centroid design method was employed to design the gradation of recycled coarse aggregate.The bulk density was measured while the specific surface area and average excess paste thickness were calculated with different gradations.The fluidity,dynamic yield stress,static yield stress,printed width,printed inclination,compressive strength and ultrasonic wave velocity of 3D printed recycled aggregate concrete(3DPRAC)were further studied.The experimental results demonstrate that,with the increase of small-sized aggregate(4.75-7 mm)content,the bulk density initially increases and then decreases,and the specific surface area gradually increases.The average excess paste thickness fluctuates with both bulk density and specific surface area.The workability of 3DPRAC is closely related to the average excess paste thickness.With an increase in average paste thickness,there is a gradual decrease in dynamic yield stress,static yield stress and printed inclination,accompanied by an increase in fluidity and printed width.The mechanical performance of 3DPRAC closely correlates with the bulk density.With an increase in the bulk density,there is an increase in the ultrasonic wave velocity,accompanied by a slight increase in the compressive strength and a significant decrease in the anisotropic coefficient.Furthermore,an index for buildability failure of 3DPRAC based on the average excess paste thickness is proposed.
文摘A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.
文摘Taking B District in A City as an example, quality classification of basic farmland was evaluated based on farmland gradation. It can be concluded from the analysis that utilization grade of basic farmland in current round was 16.82 without consideration of farmland gradation updating, and the grade enhanced by 0.08, still lower by 0.11 than that in last round, when the updating was taken into account. Finally, the reasons for problems occurred in the round were analyzed as follows: less consideration of protection on basic farmland in orientation of urban development; neglecting of basic farmland quality in Overall Plan of Land Utilization; non-classification of excellent lands after land consolidation; untimely updating of farmland gradation. In addition, the countermeasures were proposed correpondingly, including strengthening of basic farmland quality in the Plan, classification of excellent lands after consolidation, timely updating and inclusion of farmland gradation into "one map" project.
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
基金supported by National Natural Science Foundation of China (Grant no.11502194)
文摘To optimize the energy output and improve the energy utilization efficiency of an aluminized explosive,an explosion device was developed and used to investigate the detonation pressure and temperature of R1(A16)aluminum powder and the aluminum powder particle gradation of R2(Al6+Al13),R3(Al6+Al24)and R4(Al6+AI flake)in a confined space.By using gas chromatography,quantitative analysis and calculations were carried out to analyze the gaseous detonation products.Finally,the reaction ratios of the aluminum powder and the explosion reaction equations were calculated.The results show that in a confined space,the quasi-static pressures and equilibrium temperature of the aluminum powder in air are higher than in vacuum.In vacuum,the quasi-static pressures and equilibrium temperatures of the samples in descending order are R1>R3>R4>R2 and R3>R4>R1>R2,respectively.In air,the quasi-static pressures and equilibrium telperatures of the samples in descending order are R1>R2>R4>R3 and R1>R4>R2>R3,respectively.R4(Al6+AI flake)and R3(Al6+A124)have relatively higher temperatures after detonation,which shows that the particle gradation method can enhance the reaction energy output of aluminum during the initial reaction stage of the explosion and increase the reaction ratio by10.6%and 8.0%,respectively.In air,the reaction ratio of AI6 aluminum powder can reach as high as 78.16%,and the reaction ratio is slightly reduced after particle gradation.Finally,the reaction equations of the explosives in vacuum and in air were calculated by quantitative analysis of the explosion products,which provides a powerful basis for the study of RDX-based explosive reactions.
基金financially supported by the National Natural Science Foundation of China(Nos.52130204,52174376,51822405)Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+5 种基金Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)The Youth Innovation Team of Shaanxi UniversitiesJoint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(2020GXLH-Z-024)Key R&D Program of Shaan Xi Province(No.2019ZDLGY 04-04)Fundamental Research Funds for the Central Universities(No.D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056 and CX2021066),China。
文摘Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.
基金National Natural Science Foundation of China(51250110077)
文摘The shape characterization and spatial distribution of aggregate,mastic and air void phases for asphalt mixture were analyzed.Three air void percentage asphalt mixtures,4%,7% and 8%,respectively,were cut into cross sections and polished.X-ray scanning microscope was used to capture aggregate,mastic,air void phase by the image.The average of polygon diameter was chosen as a threshold to determine which aggregates would be retained on a given sieve.The aggregate morphological image from scanned image was utilized by digital image processing method to calculate the gradation of aggregate and simulate the real gradation.Analysis result shows that the air void of asphalt mixture has influence on the correlation between calculation gradation and actual gradation.When comparing 4.75 mm sieve size of 4%,7% and 8% air void asphalt mixtures,7% air void asphalt mixture has 55% higher than actual size gradation,8% air void asphalt mixture has 8% higher than actual size gradation,and 4% air void asphalt mixture has 3.71% lower than actual size gradation.4% air void asphalt mixture has the best correlation between calculation gradation and actual gradation comparing to other specimens.The air void percentage of asphalt mixture has no obvious influence on the air void orientation,and three asphalt mixtures show the similar air orientation along the same direction.
基金Under the auspices of Key Project of Science and Technology of the Ministry of Education (No. 03111)IncubationFund Project of Science and Technology Committee of Chongqing (No. 017079)
文摘The conflicts among food security, economic development and ecological protection are the “sticking point” of undeveloped southwestern mountainous areas of China. The objectives of this study are to identify appropriate inte- grated indicators influencing the classification and gradation of cultivated land quality in the southwestern mountainous area of China based on semi-structure interview, and to promote the monitoring of cultivated land quality in this region. Taking Bishan County of Chongqing as a study case, the integrated indicators involve the productivity, protection, ac- ceptability, and stability of cultivated land. The integrated indicators accord with the characteristics of land resources and human preference in southwestern mountainous area of China. In different agricultural zones, we emphasize different indicators, such as emphasizing productivity, stabilization and acceptability in low hilly and plain agricultural integrative zone (LHP-AIZ), protection, productivity and stability in low mountain and hill agro-forestry ecological zone (LMH-AEZ), and acceptability in plain outskirts integrative agricultural zone (PO-IAZ), respectively. The pronounced difference of classification and gradation of cultivated land, regardless of inter-region or intra-region, is observed, with the reducible rank from PO-IAZ, LHP-AIZ to LMH-AEZ. Research results accord with the characteristics of assets management and intensive utilization of cultivated land resources in the southwestern mountainous area of China. Semi-structure interview adequately presents the principal agent of farmers in agricultural land use and rural land market. This method is very effective and feasible to obtain data of the quality of cultivated land in the southwestern mountainous area of China.