期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Dynamic Spatial Focus in Alzheimer’s Disease Diagnosis via Multiple CNN Architectures and Dynamic GradNet
1
作者 Jasem Almotiri 《Computers, Materials & Continua》 2025年第5期2109-2142,共34页
The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)images.This study introduces Dynamic GradNet,a novel deep learning mode... The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)images.This study introduces Dynamic GradNet,a novel deep learning model designed to increase diagnostic accuracy and interpretability for multiclass AD classification.Initially,four state-of-the-art convolutional neural network(CNN)architectures,the self-regulated network(RegNet),residual network(ResNet),densely connected convolutional network(DenseNet),and efficient network(EfficientNet),were comprehensively compared via a unified preprocessing pipeline to ensure a fair evaluation.Among these models,EfficientNet consistently demonstrated superior performance in terms of accuracy,precision,recall,and F1 score.As a result,EfficientNetwas selected as the foundation for implementing Dynamic GradNet.Dynamic GradNet incorporates gradient weighted class activation mapping(GradCAM)into the training process,facilitating dynamic adjustments that focus on critical brain regions associated with early dementia detection.These adjustments are particularly effective in identifying subtle changes associated with very mild dementia,enabling early diagnosis and intervention.The model was evaluated with the OASIS dataset,which contains greater than 80,000 brain MR images categorized into four distinct stages of AD progression.The proposed model outperformed the baseline architectures,achieving remarkable generalizability across all stages.This findingwas especially evident in early-stage dementia detection,where Dynamic GradNet significantly reduced false positives and enhanced classification metrics.These findings highlight the potential of Dynamic GradNet as a robust and scalable approach for AD diagnosis,providing a promising alternative to traditional attention-based models.The model’s ability to dynamically adjust spatial focus offers a powerful tool in artificial intelligence(AI)assisted precisionmedicine,particularly in the early detection of neurodegenerative diseases. 展开更多
关键词 Spatial focus gradcam medical image classification deep learning early dementia detection neurodegenerative disease MRI analysis Alzheimer’s attention CNN
暂未订购
基于改进MMAL的细粒度图像分类研究 被引量:2
2
作者 李冰锋 冀得魁 杨艺 《电子测量技术》 北大核心 2024年第17期172-179,共8页
针对细粒度图像分类中目标区域难以精准定位及其内部细粒度特征难以识别的问题,提出了一种基于改进MMAL的细粒度图像分类方法。首先,利用形变卷积的感知区域可变性原理,动态地感知样本图像中不同尺度和形状的目标区域特征,从而增强网络... 针对细粒度图像分类中目标区域难以精准定位及其内部细粒度特征难以识别的问题,提出了一种基于改进MMAL的细粒度图像分类方法。首先,利用形变卷积的感知区域可变性原理,动态地感知样本图像中不同尺度和形状的目标区域特征,从而增强网络对目标区域位置的感知能力。随后,采用GradCAM梯度回流的方法生成网络注意力热图,以减小特征背景噪声的干扰,实现对图像目标区域的精准定位。最后,提出位置感知空间注意力模块,通过融合坐标位置和双尺度空间信息,显著提升了网络对目标区域细粒度特征的提取能力。实验结果表明,与基线算法相比,该方法在CUB-200-2011、Stanford Car和FGVC-Aircraft三个公共数据集上分类精度分别提升了1.4%、1.5%、1.9%,该结果验证了所提方法的有效性。 展开更多
关键词 细粒度图像分类 多尺度形变分组 位置感知空间注意力 gradcam热图定位 多分支
原文传递
基于改进YOLO v5的皮蛋裂纹在线检测方法 被引量:6
3
作者 汤文权 陈灼廷 +2 位作者 王东桥 范维 王巧华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期384-392,共9页
为了解决裂纹皮蛋分选中存在的效率低、人力成本高等问题,提出了一种基于改进YOLO v5的皮蛋裂纹在线检测方法。使用EfficientViT网络替换主干特征提取网络,并采用迁移学习对网络进行训练,分别得到YOLO v5n_EfficientViTb0和YOLO v5s_Eff... 为了解决裂纹皮蛋分选中存在的效率低、人力成本高等问题,提出了一种基于改进YOLO v5的皮蛋裂纹在线检测方法。使用EfficientViT网络替换主干特征提取网络,并采用迁移学习对网络进行训练,分别得到YOLO v5n_EfficientViTb0和YOLO v5s_EfficientViTb1两个模型。YOLO v5n_EfficientViTb0为轻量化模型,相较于改进前参数量减少14.8%,浮点数计算量减少26.8%;YOLO v5s_EfficientViTb1为高精度检测模型,平均精度均值为87.8%。采用GradCAM++对模型可视化分析,得出改进模型减少了对背景区域的关注度,证明了改进模型的有效性。设计了视频帧的目标框匹配算法,实现了视频中皮蛋的目标追踪,依据皮蛋的检测序列实现了对皮蛋的定位和裂纹与否的判别。轻量化模型的判别准确率为92.0%,高精度模型的判别准确率为94.3%。研究结果表明,改进得到的轻量化模型为运算能力较差的皮蛋裂纹在线检测装备提供了解决方案,改进得到的高精度模型为生产要求更高的皮蛋裂纹在线检测装备提供了技术支持。 展开更多
关键词 皮蛋 裂纹检测 YOLO v5 EfficientViT 目标跟踪 gradcam++
在线阅读 下载PDF
SkinSage XAI: An explainable deep learning solution for skin lesion diagnosis
4
作者 Geetika Munjal Paarth Bhardwaj +2 位作者 Vaibhav Bhargava Shivendra Singh Nimish Nagpal 《Health Care Science》 2024年第6期438-455,共18页
Background:Skin cancer poses a significant global health threat,with early detection being essential for successful treatment.While deep learning algorithms have greatly enhanced the categorization of skin lesions,the... Background:Skin cancer poses a significant global health threat,with early detection being essential for successful treatment.While deep learning algorithms have greatly enhanced the categorization of skin lesions,the black-box nature of many models limits interpretability,posing challenges for dermatologists.Methods:To address these limitations,SkinSage XAI utilizes advanced explainable artificial intelligence(XAI)techniques for skin lesion categorization.A data set of around 50,000 images from the Customized HAM10000,selected for diversity,serves as the foundation.The Inception v3 model is used for classification,supported by gradient-weighted class activation mapping and local interpretable model-agnostic explanations algorithms,which provide clear visual explanations for model outputs.Results:SkinSage XAI demonstrated high performance,accurately categorizing seven types of skin lesions—dermatofibroma,benign keratosis,melanocytic nevus,vascular lesion,actinic keratosis,basal cell carcinoma,and melanoma.It achieved an accuracy of 96%,with precision at 96.42%,recall at 96.28%,F1 score at 96.14%,and an area under the curve of 99.83%.Conclusions:SkinSage XAI represents a significant advancement in dermatology and artificial intelligence by bridging gaps in accuracy and explainability.The system provides transparent,accurate diagnoses,improving decision-making for dermatologists and potentially enhancing patient outcomes. 展开更多
关键词 deep learning skin lesions explainable artificial intelligence HAM10000 gradcam LIME
在线阅读 下载PDF
Development of a cutting-edge ensemble pipeline for rapid and accurate diagnosis of plant leaf diseases
5
作者 S.M.Nuruzzaman Nobel Maharin Afroj +1 位作者 Md Mohsin Kabir M.F.Mridha 《Artificial Intelligence in Agriculture》 2024年第4期56-72,共17页
Selecting techniques is a crucial aspect of disease detection analysis,particularly in the convergence of computer vision and agricultural technology.Maintaining crop disease detection in a timely and accurate manner ... Selecting techniques is a crucial aspect of disease detection analysis,particularly in the convergence of computer vision and agricultural technology.Maintaining crop disease detection in a timely and accurate manner is essential to maintaining global food security.Deep learning is a viable answer to meet this need.To proceed with this study,we have developed and evaluated a disease detection model using a novel ensemble technique.We propose to introduce DenseNetMini,a smaller version of DenseNet.We propose combining DenseNetMini with a learning resizer in ensemble approach to enhance training accuracy and expedite learning.Another unique proposition involves utilizing Gradient Product(GP)as an optimization technique,effectively reducing the training time and improving the model performance.Examining images at different magnifications reveals noteworthy diagnostic agreement and accuracy improvements.Test accuracy rates of 99.65%,98.96%,and 98.11%are seen in the Plantvillage,Tomato leaf,and Appleleaf9 datasets,respectively.One of the research's main achievements is the significant decrease in processing time,which suggests that using the GP could improve disease detection in agriculture's accessibility and efficiency.Beyond quantitative successes,the study highlights Explainable Artificial Intelligence(XAl)methods,which are essential to improving the disease detection model's interpretability and transparency.XAI enhances the interpretability of the model by visually identifying critical areas on plant leaves for disease identification,which promotes confidence and understanding of the model's functionality. 展开更多
关键词 Leaf disease Transfer learning gradcam Saliency map Computer vision SUSTAINABILITY Agriculture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部