In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob...In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.展开更多
Loyalty program (LP) is a popular marketing activity of enterprises. As a result of firms’ effort to increase customers’ loyalty, point exchange or redemption services are now available worldwide. These services att...Loyalty program (LP) is a popular marketing activity of enterprises. As a result of firms’ effort to increase customers’ loyalty, point exchange or redemption services are now available worldwide. These services attract not only customers but also attackers. In pioneering research, which first focused on this LP security problem, an empirical analysis based on Japanese data is shown to see the effects of LP-point liquidity on damages caused by security incidents. We revisit the empirical models in which the choice of variables is inspired by the Gordon-Loeb formulation of security investment: damage, investment, vulnerability, and threat. The liquidity of LP points corresponds to the threat in the formulation and plays an important role in the empirical study because it particularly captures the feature of LP networks. However, the actual proxy used in the former study is artificial. In this paper, we reconsider the liquidity definition based on a further observation of LP security incidents. By using newly defined proxies corresponding to the threat as well as other refined proxies, we test hypotheses to derive more implications that help LP operators to manage partnerships;the implications are consistent with recent changes in the LP network. Thus we can see the impacts of security investment models include a wider range of empirical studies.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
A one-dimensional (1D) Frenkel-Kontorova (FK) model is studied numerically in this paper, and two new analytical solutions (a supersonic kink and a nonlinear periodic wave) of the Sine-Gordon (SG) equation (c...A one-dimensional (1D) Frenkel-Kontorova (FK) model is studied numerically in this paper, and two new analytical solutions (a supersonic kink and a nonlinear periodic wave) of the Sine-Gordon (SG) equation (continuum limit approximation of the FK model) are obtained by using the Jacobi elliptic function expansion method. Taking these new solutions as initial conditions for the FK model, we numerically find there exist the supersonic kink and the nonlinear periodic wave in these systems and obtain a lot of interesting and significant results. Moreover, we also investigate the subsonic kink and the breather in these systems and obtain some new feature.展开更多
文摘In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST.
文摘Loyalty program (LP) is a popular marketing activity of enterprises. As a result of firms’ effort to increase customers’ loyalty, point exchange or redemption services are now available worldwide. These services attract not only customers but also attackers. In pioneering research, which first focused on this LP security problem, an empirical analysis based on Japanese data is shown to see the effects of LP-point liquidity on damages caused by security incidents. We revisit the empirical models in which the choice of variables is inspired by the Gordon-Loeb formulation of security investment: damage, investment, vulnerability, and threat. The liquidity of LP points corresponds to the threat in the formulation and plays an important role in the empirical study because it particularly captures the feature of LP networks. However, the actual proxy used in the former study is artificial. In this paper, we reconsider the liquidity definition based on a further observation of LP security incidents. By using newly defined proxies corresponding to the threat as well as other refined proxies, we test hypotheses to derive more implications that help LP operators to manage partnerships;the implications are consistent with recent changes in the LP network. Thus we can see the impacts of security investment models include a wider range of empirical studies.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the National Natural Science Foundation of China (Grant No 10575082)the Natural Science Foundation of Gansu Province of China (Grant No 3ZS061-A25-013)the Natural Science Foundation of Northwest Normal University of China(Grant No NWNU-KJCXGC-03-17)
文摘A one-dimensional (1D) Frenkel-Kontorova (FK) model is studied numerically in this paper, and two new analytical solutions (a supersonic kink and a nonlinear periodic wave) of the Sine-Gordon (SG) equation (continuum limit approximation of the FK model) are obtained by using the Jacobi elliptic function expansion method. Taking these new solutions as initial conditions for the FK model, we numerically find there exist the supersonic kink and the nonlinear periodic wave in these systems and obtain a lot of interesting and significant results. Moreover, we also investigate the subsonic kink and the breather in these systems and obtain some new feature.