Transformation of glycerol into value-added che micals via electro-oxidation using the green electricity is considered as a sustainable and promising process.Whereas,the synthesis of specific C3 products such as glyce...Transformation of glycerol into value-added che micals via electro-oxidation using the green electricity is considered as a sustainable and promising process.Whereas,the synthesis of specific C3 products such as glyceric acid(GLA)from electro-oxidation of glycerol still suffers from poor catalytic performance.Here,we used a two-step deposition strategy to prepare Au-CeO_(2)/CNT catalyst for highly efficient electrosynthesis of GLA from glycerol oxidation under alkaline conditions.Upon treating 0.5 mol/L glycerol at 1.12 V(vs.RHE)for 12 h in 1.0 mol/L KOH solution,the glycerol conversion and GLA selectivity over Au-CeO_(2)/CNT achieve 99.7%and 50.0%,respectively.The glycerol conversion doubles when an optimal amount of CeO_(2)is introduced to the Au/CNT catalyst,Au-CeO_(2)/CNT provides numerous active sites at ternary junctions of Au-CeO_(2)-CNT,which effectively suppress the adsorption of GLA on the surface of Au nanoparticles and prevent the nanoparticles from serious agglomeration,thereby facilitate the glycerol-to-GLA conversion with considerable cyclability.This study provides valuable insight into the rational design of high-performance catalysts for alcohol electro-oxidation.展开更多
Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation an...Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.展开更多
A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at at...A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.展开更多
In this work,cobalt glycerate(CoG@F127)nanosheets grown on the surface of graphene oxide(GO),i.e.CoG@F127/GO,have been synthesized with the assistance of nonionic surfactant Pluronic F127 via a hydrothermal method.Aft...In this work,cobalt glycerate(CoG@F127)nanosheets grown on the surface of graphene oxide(GO),i.e.CoG@F127/GO,have been synthesized with the assistance of nonionic surfactant Pluronic F127 via a hydrothermal method.After calcination,CoG@F127/GO is transformed into one derivative,Co nanoparticles coated with a trace amount of carbon(Co-C)on GO(Co-C/GO).The Co nanoparticles consist of an atypical core-shell structure,in which the core and the shell are both Co.Co-C anchored on GO can avoid the nanoparticles aggregation and expose more active sites for hydrogen evolution reaction(HER)to significantly improve the catalyst activity of HER.CoG@F127/GO is phosphatized to form the other derivate,cobalt pyrophosphate coated with a small amount of carbon(Co_(2)P_(2)O_(7)-C)on GO(Co_(2)P_(2)O_(7)-C/GO).Co_(2)P_(2)O_(7)-C/GO composite owns a large electrochemical active surface area(ECSA)and fast rate towards oxygen evolution reaction(OER).Furthermore,the two derivatives of CoG@F127/GO,i.e.Co-C/GO and Co_(2)P_(2)O_(7)-C/GO as twin flowers,are assembled into an overall water splitting electrolytic cell with a cell voltage of 1.56 V to deliver a current density of 10 mA cm^(-2).展开更多
The electrocatalytic oxidation of glycerol to produce high-value-added chemicals(e.g.,glycerate,GLA)constitutes a crucial process for harnessing the potential of glycerol.However,the high electrocatalytic activity is ...The electrocatalytic oxidation of glycerol to produce high-value-added chemicals(e.g.,glycerate,GLA)constitutes a crucial process for harnessing the potential of glycerol.However,the high electrocatalytic activity is typically accompanied by catalyst deactivation by strong adsorption of the intermediates or products.Here,the Pt/RENC catalyst was prepared with small Pt nanoparticles supported on rare earth single-atom nitrogen-carbon(RENC,RE=La,Ce,Pr,Y)material.Aberration-corrected scanning transmission electron microscopy and X-ray absorption spectra confirm that the highly dispersed Ce sites are well maintained after the in situ formation of the Pt nanoparticles.The kinetic experiments,in situ IR and valence band characterizations,reveal that the synergy of a single atom of Ce-N_(x) sites and Pt nanoparticles leads to the alleviation of the strong adsorption of GLA,and the enhancement of the H_(2)O dissociation into active OH^(*),resulting in the fast conversion of glycerol.The rare earth single-atom sites also improve the anchoring of Pt nanoparticles.Remarkably,even in a high glycerol concentration of 0.6 M,the Pt/CeNC catalyst achieves a fast GLA production rate of 233 mmol h^(-1) g_(Pt)^(-1) and GLA yield of 51.7%with superior cycling stability,tripling the performance of the counterpart Pt/NC catalyst(75 mmol h^(-1) g_(Pt)^(-1) and 15.0%).展开更多
Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treat...Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical Ni Co P hollow nanoflowers with ultrathin nanosheet assembly.The microstructure of Ni Co P can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect.Benefitting from the promoted exposure of active sites and affluent mass diffusion routes,the HER performance of the Ni Co P hollow nanoflowers has been obviously enhanced in contrast with the solid Ni Co P nanospheres.The fabricated Ni Co P hollow nanoflowers yield the current density of 10 m A cmà2at small overpotentials of 95 and 127 m V in 0.5 mol Là1H2SO4and 1.0 mol Là1KOH solution,respectively.Moreover,the two-electrode alkaline cell assembled with the Ni Co P and Ir/C catalysts exhibits sustainable stability for overall water splitting.The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides,which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides.展开更多
Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance a...Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.展开更多
基金Project supported by the National Natural Science Foundation of China(22161033,21875125)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2023ZD11)+1 种基金the 111 Project(D20033)the"Grassland Talent"Program and"Grassland Talent"Innovation Team of Inner Mongolia。
文摘Transformation of glycerol into value-added che micals via electro-oxidation using the green electricity is considered as a sustainable and promising process.Whereas,the synthesis of specific C3 products such as glyceric acid(GLA)from electro-oxidation of glycerol still suffers from poor catalytic performance.Here,we used a two-step deposition strategy to prepare Au-CeO_(2)/CNT catalyst for highly efficient electrosynthesis of GLA from glycerol oxidation under alkaline conditions.Upon treating 0.5 mol/L glycerol at 1.12 V(vs.RHE)for 12 h in 1.0 mol/L KOH solution,the glycerol conversion and GLA selectivity over Au-CeO_(2)/CNT achieve 99.7%and 50.0%,respectively.The glycerol conversion doubles when an optimal amount of CeO_(2)is introduced to the Au/CNT catalyst,Au-CeO_(2)/CNT provides numerous active sites at ternary junctions of Au-CeO_(2)-CNT,which effectively suppress the adsorption of GLA on the surface of Au nanoparticles and prevent the nanoparticles from serious agglomeration,thereby facilitate the glycerol-to-GLA conversion with considerable cyclability.This study provides valuable insight into the rational design of high-performance catalysts for alcohol electro-oxidation.
基金support from the National Natural Science Foundation of China(21773061,21978095)Innovation Program of Shanghai Municipal Education Commission(15ZZ031)the Fundamental Research Funds for the Central Universities。
文摘Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.
基金supported by CONICET(PIP 0276)UNLP(Projects X 700)+1 种基金UNNOBA(SIB 2924/14)Ministry of Education and Sports(Call "Jorge Sabato" Project 44-144-415),Argentina
文摘A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.
基金The funding support from the National Natural Science Foundation of China(Grant No.21773203)the“Qinglan project”of Jiangsu Province(2018-12)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions is acknowledged。
文摘In this work,cobalt glycerate(CoG@F127)nanosheets grown on the surface of graphene oxide(GO),i.e.CoG@F127/GO,have been synthesized with the assistance of nonionic surfactant Pluronic F127 via a hydrothermal method.After calcination,CoG@F127/GO is transformed into one derivative,Co nanoparticles coated with a trace amount of carbon(Co-C)on GO(Co-C/GO).The Co nanoparticles consist of an atypical core-shell structure,in which the core and the shell are both Co.Co-C anchored on GO can avoid the nanoparticles aggregation and expose more active sites for hydrogen evolution reaction(HER)to significantly improve the catalyst activity of HER.CoG@F127/GO is phosphatized to form the other derivate,cobalt pyrophosphate coated with a small amount of carbon(Co_(2)P_(2)O_(7)-C)on GO(Co_(2)P_(2)O_(7)-C/GO).Co_(2)P_(2)O_(7)-C/GO composite owns a large electrochemical active surface area(ECSA)and fast rate towards oxygen evolution reaction(OER).Furthermore,the two derivatives of CoG@F127/GO,i.e.Co-C/GO and Co_(2)P_(2)O_(7)-C/GO as twin flowers,are assembled into an overall water splitting electrolytic cell with a cell voltage of 1.56 V to deliver a current density of 10 mA cm^(-2).
基金supported by the National Natural Science Foundation of China(22161033,21875125)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2023ZD11)+1 种基金the 111 Project(D20033)the“Grassland Talent”Program of Inner Mongolia.
文摘The electrocatalytic oxidation of glycerol to produce high-value-added chemicals(e.g.,glycerate,GLA)constitutes a crucial process for harnessing the potential of glycerol.However,the high electrocatalytic activity is typically accompanied by catalyst deactivation by strong adsorption of the intermediates or products.Here,the Pt/RENC catalyst was prepared with small Pt nanoparticles supported on rare earth single-atom nitrogen-carbon(RENC,RE=La,Ce,Pr,Y)material.Aberration-corrected scanning transmission electron microscopy and X-ray absorption spectra confirm that the highly dispersed Ce sites are well maintained after the in situ formation of the Pt nanoparticles.The kinetic experiments,in situ IR and valence band characterizations,reveal that the synergy of a single atom of Ce-N_(x) sites and Pt nanoparticles leads to the alleviation of the strong adsorption of GLA,and the enhancement of the H_(2)O dissociation into active OH^(*),resulting in the fast conversion of glycerol.The rare earth single-atom sites also improve the anchoring of Pt nanoparticles.Remarkably,even in a high glycerol concentration of 0.6 M,the Pt/CeNC catalyst achieves a fast GLA production rate of 233 mmol h^(-1) g_(Pt)^(-1) and GLA yield of 51.7%with superior cycling stability,tripling the performance of the counterpart Pt/NC catalyst(75 mmol h^(-1) g_(Pt)^(-1) and 15.0%).
基金supported by the National Natural Science Foundation of China (21573083)the Fundamental Research Funds for the Central Universities (2019kfy RCPY100)
文摘Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts.Herein,a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical Ni Co P hollow nanoflowers with ultrathin nanosheet assembly.The microstructure of Ni Co P can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect.Benefitting from the promoted exposure of active sites and affluent mass diffusion routes,the HER performance of the Ni Co P hollow nanoflowers has been obviously enhanced in contrast with the solid Ni Co P nanospheres.The fabricated Ni Co P hollow nanoflowers yield the current density of 10 m A cmà2at small overpotentials of 95 and 127 m V in 0.5 mol Là1H2SO4and 1.0 mol Là1KOH solution,respectively.Moreover,the two-electrode alkaline cell assembled with the Ni Co P and Ir/C catalysts exhibits sustainable stability for overall water splitting.The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides,which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides.
基金the National Natural Science Foundation of China(Nos.21702116,51772162,and 52072197)the 111 Project of China(No.D20017)+5 种基金Shandong Provincial Key Research and Development Program,China(No.2019GSF107087)Qingdao Postdoctoral Sustentation Fund,Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Taishan Scholar Young Talent Program(No.tsqn201909114)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province(No.ZR2020ZD09).
文摘Zinc ion hybrid supercapacitors(ZHS)have received much attention due to the enhanced potential window range and high specific capacity.However,the appropriate positive materials with high electrochemical performance are still a challenge.Herein,NH_(4)^(+)and glycerate anions pre-inserted Mo glycerate(N-MoG)spheres are synthesized and serve as the template to form NH_(4)^(+)intercalated Ni_(3)S_(2)/Ni_(3)O_(2)(OH)_(4)@MoS_(2)core–shell nanoflower(N-NiMo-OS)in-situ grown on nickel foam(NF)(N-NiMo-OS/NF)by sulfurization treatment.Compared with the product using traditional MoG as a template,N-NiMo-OS/NF inheriting a larger core structure from N-MoG delivers enhanced space for ions transport and volume expansion during the energy storage process,together with the synergistic effects of multi-components and the heterostructure,the as-prepared N-NiMo-OS/NF nanoflower exhibits excellent performance for the battery-type hybrid supercapacitors(BHS)and ZHS devices.Notably,the ZHS device delivers superior electrochemical performance to the BHS device,such as a higher specific capacity of 327.5 mAh·g^(−1)at 1 A·g^(−1),a preeminent energy density of 610.6 Wh·kg^(−1)at 1710 W·kg^(−1),long cycle life.The in-situ Raman,ex-situ X-ray photoelectron spectroscopy(XPS),theoretical calculation demonstrate the extra Zn^(2+)insertion/extraction storage mechanism provides enhanced electrochemical performance for ZHS device.Therefore,the dual-ion pre-inserted strategy can be extended for other advanced electrode materials in energy storage fields.