In the parametric modeling of the circuit model for glow discharge in air,a new method for the design of glow discharge circuit model is presented.The new circuit model is an important reference for the design of plas...In the parametric modeling of the circuit model for glow discharge in air,a new method for the design of glow discharge circuit model is presented.The new circuit model is an important reference for the design of plasma power supply,the simulation of glow discharge plasma actuator and the simulation of glow discharge plasma anemometer.The modeling approach consists in developing an electrical model of the glow discharge in air based on circuit components.The structure of the circuit model is established according to the theoretical analysis and the experimental device.Then the parameters of the circuit model are obtained based on the circuit analysis.Finally,the circuit model is verified by comparing the simulation current with the experimental current.This model takes into account the whole framework of the air glow discharge including the sheath and the plasma area.The built circuit model is feasible and reliable,thus being instructive for the investigation of the glow discharge in air.展开更多
A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characterist...A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.展开更多
A self-consistent analysis of a pulsed direct-current (DC) N2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equati...A self-consistent analysis of a pulsed direct-current (DC) N2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment.展开更多
Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its stead...Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.展开更多
The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK...The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK-4.Various scenarios dealing with formations of spatial distributions of densities and fluxes for charged particles were studied,and evaluations of the influence of dust particles on the discharge were obtained in a wide range of dust densities.Two extreme cases were distinguished:weak dust influence when the densities,fluxes and electric field profiles are not perturbed,and strong dust influence when all three density profiles(electrons,ions and charged dust)in the dust cloud are similar(parallel)to each other,resulting in all created charges in the dust cloud being lost inside the cloud.In such a case,the ambipolar field and the transport of charged particles are decreased in the dust cloud,and any ambipolar flux is almost absent within the cloud.展开更多
The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pur...The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon.The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity.Under a fixed voltage on each electrode,a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure,the higher first anode,and the appropriate cavity diameter.As the pressure increases,the electron density inside the hollow cathode,the high density plasma volume between the first anode and second anodes,and the radial electric field in the cathode cavity initially increase and subsequently decrease.As the cavity diameter increases,the high-density plasma volume between the first and second anodes initially increases and subsequently decreases;whereas the electron density inside the hollow cathode decreases.As the first anode radius increases,the electron density increases both inside and outside of the cavity.Moreover,the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region.The results reveal that the discharge inside the cavity interacts with that outside the cavity.The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes.Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (No.BK20140820)the Fundamental Research Funds for the Central Universities (No.NJ20160037)+2 种基金the Natural Science Foundation of China(No.51406083)the Funding of Jiangsu Innovation Program for Graduate Education(No.SJZZ16_0055)the Fundamental Research Funds for the Central Universities
文摘In the parametric modeling of the circuit model for glow discharge in air,a new method for the design of glow discharge circuit model is presented.The new circuit model is an important reference for the design of plasma power supply,the simulation of glow discharge plasma actuator and the simulation of glow discharge plasma anemometer.The modeling approach consists in developing an electrical model of the glow discharge in air based on circuit components.The structure of the circuit model is established according to the theoretical analysis and the experimental device.Then the parameters of the circuit model are obtained based on the circuit analysis.Finally,the circuit model is verified by comparing the simulation current with the experimental current.This model takes into account the whole framework of the air glow discharge including the sheath and the plasma area.The built circuit model is feasible and reliable,thus being instructive for the investigation of the glow discharge in air.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.
基金The project supported by the National Nature Science Foundation of China (No. 10275010)
文摘A self-consistent analysis of a pulsed direct-current (DC) N2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575050 and 10805013)the Midwest Universities Comprehensive Strength Promotion Project+1 种基金the Natural Science Foundation of Hebei Province,China(Grant Nos.A2016201042 and A2015201092)the Research Foundation of Education Bureau of Hebei Province,China(Grant No.LJRC011)
文摘Characteristics of a direct current (DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage-current characteristics.
基金supported by National Natural Science Foundation of China (No. 11775062)
文摘The research herein examined the results of numerical simulations of the positive column of a glow discharge in argon dusty plasma using COMSOL Multiphysics software under conditions similar to the project known as PK-4.Various scenarios dealing with formations of spatial distributions of densities and fluxes for charged particles were studied,and evaluations of the influence of dust particles on the discharge were obtained in a wide range of dust densities.Two extreme cases were distinguished:weak dust influence when the densities,fluxes and electric field profiles are not perturbed,and strong dust influence when all three density profiles(electrons,ions and charged dust)in the dust cloud are similar(parallel)to each other,resulting in all created charges in the dust cloud being lost inside the cloud.In such a case,the ambipolar field and the transport of charged particles are decreased in the dust cloud,and any ambipolar flux is almost absent within the cloud.
基金supported by National Natural Science Foundation of China(Grant Nos.11205046 and 51777051)the Science Foundation of in Hebei province(Grant No.A2016201025)+1 种基金the Post-Graduate’s Innovation Fund Project of Hebei University(Grant No.X201733)the Science Foundation of Hebei University(Grant Nos.2011YY01 and 2012-237)
文摘The effects of parameters such as pressure,first anode radius,and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon.The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity.Under a fixed voltage on each electrode,a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure,the higher first anode,and the appropriate cavity diameter.As the pressure increases,the electron density inside the hollow cathode,the high density plasma volume between the first anode and second anodes,and the radial electric field in the cathode cavity initially increase and subsequently decrease.As the cavity diameter increases,the high-density plasma volume between the first and second anodes initially increases and subsequently decreases;whereas the electron density inside the hollow cathode decreases.As the first anode radius increases,the electron density increases both inside and outside of the cavity.Moreover,the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region.The results reveal that the discharge inside the cavity interacts with that outside the cavity.The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes.Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.