期刊文献+
共找到318篇文章
< 1 2 16 >
每页显示 20 50 100
Improved Global Context Descriptor for Describing Interest Regions 被引量:3
1
作者 刘景能 曾贵华 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期147-152,共6页
The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performanc... The global context(GC) descriptor is improved for describing interest regions,uses gradient orientation for binning,and thus provides more robust invariance for geometric and photometric transformations.The performance of the improved GC(IGC) to image matching is studied through extensive experiments on the Oxford A?ne dataset.Empirical results indicate that the proposed IGC yields quite stable and robust results,signi?cantly outperforms the original GC,and also can outperform the classical scale-invariant feature transform(SIFT) in most of the test cases.By integrating the IGC to the SIFT,the resulting of hybrid SIFT+IGC performs best over all other single descriptors in these experimental evaluations with various geometric transformations. 展开更多
关键词 global context(GC) scale-invariant feature transform(SIFT) region description image matching
原文传递
Chinese word segmentation with local and global context representation learning 被引量:2
2
作者 李岩 Zhang Yinghua +2 位作者 Huang Xiaoping Yin Xucheng Hao Hongwei 《High Technology Letters》 EI CAS 2015年第1期71-77,共7页
A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chin... A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chinese character learning model uses the semanties of loeal context and global context to learn the representation of Chinese characters. Then, Chinese word segmentation model is built by a neural network, while the segmentation model is trained with the eharaeter representations as its input features. Finally, experimental results show that Chinese charaeter representations can effectively learn the semantic information. Characters with similar semantics cluster together in the visualize space. Moreover, the proposed Chinese word segmentation model also achieves a pretty good improvement on precision, recall and f-measure. 展开更多
关键词 local and global context representation learning Chinese character representa- tion Chinese word segmentation
在线阅读 下载PDF
Rethinking Global Context in Crowd Counting
3
作者 Guolei Sun Yun Liu +3 位作者 Thomas Probst Danda Pani Paudel Nikola Popovic Luc Van Gool 《Machine Intelligence Research》 EI CSCD 2024年第4期640-651,共12页
This paper investigates the role of global context for crowd counting.Specifically,a pure transformer is used to extract features with global information from overlapping image patches.Inspired by classification,we ad... This paper investigates the role of global context for crowd counting.Specifically,a pure transformer is used to extract features with global information from overlapping image patches.Inspired by classification,we add a context token to the input sequence,to facilitate information exchange with tokens corresponding to image patches throughout transformer layers.Due to the fact that transformers do not explicitly model the tried-and-true channel-wise interactions,we propose a token-attention module(TAM)to recalibrate encoded features through channel-wise attention informed by the context token.Beyond that,it is adopted to predict the total person count of the image through regression-token module(RTM).Extensive experiments on various datasets,including ShanghaiTech,UCFQNRF,JHU-CROWD++and NWPU,demonstrate that the proposed context extraction techniques can significantly improve the performanceover the baselines. 展开更多
关键词 Crowd counting vision transformer global context ATTENTION density map.
原文传递
Intercultural Trust in Global Contexts:Synthesizing a Western Nomological Approach with a Chinese Systems Approach
4
作者 Rong Du Mingqian Li +2 位作者 Shizhong Ai Cathal MacSwiney Brugha Uirike Reisach 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2024年第2期162-186,共25页
Intercultural trust in global contexts plays a central role in helping people from different cultures to communicate comfortably,which is essential for cooperation.Attempting to construct a framework that might foster... Intercultural trust in global contexts plays a central role in helping people from different cultures to communicate comfortably,which is essential for cooperation.Attempting to construct a framework that might foster international cooperation,and thus be helpful for coping with global emergencies,we relate a Western nomological approach to an Eastern systems approach to analyse intercultural trust in global contexts.Considering cultural impacts on intercultural trust and the nomological framework of cultural differences,we propose an intercultural trust model to interpret how cultural differences influence trust.A qualitative study of Chinese-Irish interactions was conducted to interpret this model.We organized 10 seminars on intercultural trust,and interviewed 16 people to further explore the respondents'deeper feelings and experiences about intercultural trust in global contexts.Through this study,we have identified factors impacting on intercultural trust,and found that intercultural trust can be developed and improved in various ways.To llustrate these ways,we have provided tactics and methods for building intercultural trust in global contexts.Implications are highlighted for organizations to avoid cultural clashes and relevant political or economic risks. 展开更多
关键词 Intercultural trust global contexts systems approach Western approach Chinese approach
原文传递
Dense Face Network:A Dense Face Detector Based on Global Context and Visual Attention Mechanism 被引量:4
5
作者 Lin Song Jin-Fu Yang +1 位作者 Qing-Zhen Shang Ming-Ai Li 《Machine Intelligence Research》 EI CSCD 2022年第3期247-256,共10页
Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. Thi... Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method. 展开更多
关键词 Face detection global context attention mechanism computer vision deep learning
原文传递
Document-Level Neural Machine Translation with Hierarchical Modeling of Global Context 被引量:2
6
作者 Xin Tan Long-Yin Zhang Guo-Dong Zhou 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第2期295-308,共14页
Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global conte... Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global context for documentlevel neural machine translation(NMT).This is done through a sentence encoder to capture intra-sentence dependencies and a document encoder to model document-level inter-sentence consistency and coherence.With this hierarchical architecture,we feedback the extracted document-level global context to each word in a top-down fashion to distinguish different translations of a word according to its specific surrounding context.Notably,we explore the effect of three popular attention functions during the information backward-distribution phase to take a deep look into the global context information distribution of our model.In addition,since large-scale in-domain document-level parallel corpora are usually unavailable,we use a two-step training strategy to take advantage of a large-scale corpus with out-of-domain parallel sentence pairs and a small-scale corpus with in-domain parallel document pairs to achieve the domain adaptability.Experimental results of our model on Chinese-English and English-German corpora significantly improve the Transformer baseline by 4.5 BLEU points on average which demonstrates the effectiveness of our proposed hierarchical model in document-level NMT. 展开更多
关键词 neural machine translation document-level translation global context hierarchical model
原文传递
Natural Image Matting with Attended Global Context
7
作者 张億一 牛力 +4 位作者 Yasushi Makihara 张健夫 赵维杰 Yasushi Yagi 张丽清 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期659-673,共15页
Image matting is to estimate the opacity of foreground objects from an image. A few deep learning based methods have been proposed for image matting and perform well in capturing spatially close information. However, ... Image matting is to estimate the opacity of foreground objects from an image. A few deep learning based methods have been proposed for image matting and perform well in capturing spatially close information. However, these methods fail to capture global contextual information, which has been proved essential in improving matting performance. This is because a matting image may be up to several megapixels, which is too big for a learning-based network to capture global contextual information due to the limit size of a receptive field. Although uniformly downsampling the matting image can alleviate this problem, it may result in the degradation of matting performance. To solve this problem, we introduce a natural image matting with the attended global context method to extract global contextual information from the whole image, and to condense them into a suitable size for learning-based network. Specifically, we first leverage a deformable sampling layer to obtain condensed foreground and background attended images respectively. Then, we utilize a contextual attention layer to extract information related to unknown regions from condensed foreground and background images generated by a deformable sampling layer. Besides, our network predicts a background as well as the alpha matte to obtain more purified foreground, which contributes to better qualitative performance in composition. Comprehensive experiments show that our method achieves competitive performance on both Composition-1k and the alphamatting.com benchmark quantitatively and qualitatively. 展开更多
关键词 image matting global context deformable sampling
原文传递
The breakfast imperative: The changing context of global food security 被引量:2
8
作者 YE Li-ming Jean-Paul Malingreau +1 位作者 TANG Hua-jun Eric Van Ranst 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第6期1179-1185,共7页
The debate on global food security has regained vigor since the food crisis of 2008, when a sudden spike in the prices of staple food commodities dramatically demonstrated that securing the supply and accessibility of... The debate on global food security has regained vigor since the food crisis of 2008, when a sudden spike in the prices of staple food commodities dramatically demonstrated that securing the supply and accessibility of food for a world of nine billion people in 2050 cannot be taken for grant- ed (Godfray etal. 2010; Swinnen and Squicciarini 2012; 展开更多
关键词 The breakfast imperative The changing context of global food security
在线阅读 下载PDF
Specifying the Global Execution Context of Computer-Mediated Tasks: A Visual Notation and a Supporting Tool
9
作者 Demosthenes Akoumianakis 《Journal of Software Engineering and Applications》 2010年第4期312-330,共19页
This paper presents the notion of the global execution context of a task as a representational construct for analysing complexity in software evolution. Based on this notion a visual notation and a supporting tool are... This paper presents the notion of the global execution context of a task as a representational construct for analysing complexity in software evolution. Based on this notion a visual notation and a supporting tool are presented to support specification of a system’s global execution context. A system’s global execution context is conceived as an evolving network of use scenarios depicted by nodes and links designating semantic relationships between scenarios. A node represents either a base or a growth scenario. Directed links characterize the transition from one node to another by means of semantic scenario relationships. Each growth scenario is generated following a critique (or screening) of one or more base or reference scenarios. Subsequently, representative growth scenarios are compiled and consolidated in the global execution context graph. The paper describes the stages of this process, presents the tool designed to facilitate the construction of the global execution context graph and elaborates on recent practice and experience. 展开更多
关键词 Non-Functional Requirements Software Evolution ARTIFACTS global EXECUTION context Tools
暂未订购
The international conference on mountain development in a context of global change with special focus on the Himalayas was held successfully in Kathmandu, Nepal
10
作者 XIN Liangjie LIU Linshan 《Journal of Geographical Sciences》 SCIE CSCD 2018年第10期1560-1560,F0003,共2页
The international conference on mountain development in a context of global change with special focus on the Himalayas was held in Kathmandu, Nepal on April 21-26.
关键词 The international conference on mountain development in a context of global change with special focus on the Himalayas was held successfully in Kathmandu Nepal
原文传递
Strengthening Solidarity, Increasing Cooperation, Promoting Development---International Symposium on Sustainable Development and Solidarity in the Context of Globalization" Held in beijing
11
《International Understanding》 2000年第4期6-7,共2页
关键词 International Symposium on Sustainable Development and Solidarity in the context of globalization Strengthening Solidarity Held in beijing Promoting Development
在线阅读 下载PDF
The Trends of Globalization and Digitalization are Changing the Market Contexts
12
作者 Sunil Bharti Mittal 《China's Foreign Trade》 2016年第5期20-21,共2页
We know that SME’s that trade online grow faster and create more jobs than those that only operate in their domestic markets.The Internet is breaking down many traditional barriers to global trade,but there is still ... We know that SME’s that trade online grow faster and create more jobs than those that only operate in their domestic markets.The Internet is breaking down many traditional barriers to global trade,but there is still much governments can do to speed and enable SME digitization and ecommerce.The opportunity is huge at 展开更多
关键词 The Trends of globalization and Digitalization are Changing the Market contexts
在线阅读 下载PDF
融合全局选择与局部区分的车辆重识别网络
13
作者 徐胜军 张梦倩 +2 位作者 詹博涵 刘光辉 孟月波 《系统仿真学报》 北大核心 2025年第1期220-233,共14页
针对跨镜头多视角差异导致车辆重识别面临的不同视角、复杂背景和光照强度等干扰问题,提出了一种融合全局选择与局部区分的车辆重识别网络。基于Resnet50骨干网络,设计了融合全局特征与局部特征的三分支互补网络,利用全局分支学习车辆... 针对跨镜头多视角差异导致车辆重识别面临的不同视角、复杂背景和光照强度等干扰问题,提出了一种融合全局选择与局部区分的车辆重识别网络。基于Resnet50骨干网络,设计了融合全局特征与局部特征的三分支互补网络,利用全局分支学习车辆的整体外观信息,局部分支捕获车辆的差异性细节信息。基于注意力机制提出了上下文特征选择模块(context feature selection module,CFSM),有效分离了车辆信息与复杂背景信息,并提出了一种细节特征增强模块(detail feature enhancement module,DFEM),利用部件之间的相对位置信息强化多粒度特征细节信息的学习。提出了一种权值自适应平衡策略,联合多损失函数进行训练。实验结果表明,所提网络在VeRi-776数据集上的mAP、CMC@1和CMC@5分别达到73.2%、93.4%和97.3%;在VehicleID数据集的大规模测试子集上,CMC@1和CMC@5分别达到75.0%和92.7%。与对比网络相比,所提网络具有较高的识别率和鲁棒性。 展开更多
关键词 车辆重识别 多分支结构 全局上下文特征 局部区分特征 权值自适应策略
原文传递
基于局部和全局特征的电力设备红外和可见光图像匹配方法
14
作者 冯旭刚 阮善会 +2 位作者 王正兵 安硕 张科琪 《电工技术学报》 北大核心 2025年第7期2236-2246,2305,共12页
针对电力设备红外和可见光图像匹配过程受图像局部灰度差异影响大,以及特征点描述和匹配困难的问题,该文提出了基于局部和全局特征的电力设备红外和可见光图像匹配方法。首先,利用多尺度角检测算法分别检测红外和可见光图像中的特征点,... 针对电力设备红外和可见光图像匹配过程受图像局部灰度差异影响大,以及特征点描述和匹配困难的问题,该文提出了基于局部和全局特征的电力设备红外和可见光图像匹配方法。首先,利用多尺度角检测算法分别检测红外和可见光图像中的特征点,再使用不同尺度的曲率信息为每个特征点分配特征主方向(CAO);其次,分别构建每个特征点的部分灰度不变特征描述符(PIIFD)和全局上下文特征描述符;然后,将两种特征描述符的相似度进行加权融合,并利用双向匹配方法和随机抽样一致(RANSAC)方法筛选出正确的匹配点对;最后,得到图像间的仿射变换模型参数。实验结果表明:该文匹配方法与PIIFD、Log-Gabor直方图描述符(LGHD)和CAO匹配算法相比,正确匹配数显著增加,平均准确率较其他三种算法分别提高了50.71、27.62、11.11个百分点,平均重复度分别提高了27.69、28.81、19.18个百分点。 展开更多
关键词 电力设备 图像匹配 红外和可见光图像 全局上下文描述符 特征相似度匹配
在线阅读 下载PDF
基于改进YOLOv5s的水下鱼体检测算法
15
作者 吴燕 仇海全 马帅龙 《黑龙江工业学院学报(综合版)》 2025年第7期96-102,共7页
鱼体检测作为水下图像处理领域的一个重要研究方向,对于水产养殖、渔业监控以及生态保护等方面具有重要应用价值。然而,现有的鱼体检测方法在复杂的水下环境中仍面临诸多挑战,为了解决在鱼体形态变化大、背景复杂以及水下光照不均等情... 鱼体检测作为水下图像处理领域的一个重要研究方向,对于水产养殖、渔业监控以及生态保护等方面具有重要应用价值。然而,现有的鱼体检测方法在复杂的水下环境中仍面临诸多挑战,为了解决在鱼体形态变化大、背景复杂以及水下光照不均等情况下难以识别出鱼体的问题。首先,通过将Global Context Block融合到主干网络C3模块的两个分支中,改善模型的全局感知能力。其次,将Si LU激活函数替换为FRe LU激活函数,实现像素级的空间建模能力,进一步提高检测精度,增加该模型的鲁棒性。最后,结果表明改进后的YOLOv5s在不同复杂背景、鱼体姿态和水下环境中展现出了优异的性能,水下鱼体检测精度提升了4.8%。 展开更多
关键词 图像检测 YOLOv5s 全局上下文模块 激活函数
在线阅读 下载PDF
基于暗区域引导的低照度图像增强 被引量:1
16
作者 汪婉灵 熊邦书 +2 位作者 欧巧凤 余磊 饶智博 《应用科学学报》 北大核心 2025年第2期245-256,共12页
针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不... 针对现有增强方法在图像照度分布不均匀时出现的局部过度增强、颜色失真以及细节丢失问题,提出了一种结合暗区域引导与注意力机制的低照度图像增强方法。首先,采用简单线性迭代聚类方法生成暗区域引导图,指导网络在保障正常曝光区域不过度增强的情况下,重点增强图像曝光不足区域;其次,设计通道注意力模块,提高网络对颜色信息的提取能力,更好地恢复图像颜色,保证颜色自然度;再次,设计全局上下文模块,增加网络全局感知能力,丰富图像细节信息;最后,增强网络融合输入特征和暗区域注意力网络输出特征,实现图像对比度再增强。在6个公共数据集上进行多组对比实验,分别从主观与客观两方面进行性能对比,结果表明所提方法能够有效解决低照度图像存在的颜色失真、细节丢失和曝光不均匀问题,具有较好的视觉增强效果与泛化性。 展开更多
关键词 低照度图像增强 暗区域引导 通道注意力模块 全局上下文模块 深度学习
在线阅读 下载PDF
基于自编码器的人群异常行为检测算法
17
作者 王玉 杨晓文 +3 位作者 孙福盛 况立群 韩慧妍 张元 《计算机工程与设计》 北大核心 2025年第3期779-787,共9页
为提高人群异常行为检测算法性能,以STEAL-Net为基础,提出一种融合全局时空特征的自编码器人群异常行为检测算法。在编码器进行特征提取时,将全局跨通道特征提取模块与三维卷积结合,减少全局上下文特征的缺失;将提取到的特征序列输入到... 为提高人群异常行为检测算法性能,以STEAL-Net为基础,提出一种融合全局时空特征的自编码器人群异常行为检测算法。在编码器进行特征提取时,将全局跨通道特征提取模块与三维卷积结合,减少全局上下文特征的缺失;将提取到的特征序列输入到全局时空信息增强模块,进一步对视频帧的全局时空特征进行有效提取;进入解码器对输入帧进行重构,利用重构误差大小对异常行为进行检测。该算法在公开数据集UCSD Ped1、UCSD Ped2和ShanghaiTech上与其它先进方法进行了AUC指标的比较,实验结果表明所提算法的有效性。 展开更多
关键词 人群异常行为检测 自编码器 全局上下文 全局时空特征 重构 全局跨通道特征提取模块 全局时空信息增强模块
在线阅读 下载PDF
集成小波变换与全局感知的轻量建筑提取网络
18
作者 邵文 邵攀 +1 位作者 宋宝贵 熊彪 《液晶与显示》 北大核心 2025年第9期1333-1346,共14页
基于深度学习的建筑物提取是遥感领域一个重要研究方向。为有效平衡计算效率和提取精度,提出一种集成小波变换与全局感知的轻量建筑提取网络。首先,将参数共享、星型运算和深度可分离卷积集成,提出一种星型共享深度卷积块,以高效准确地... 基于深度学习的建筑物提取是遥感领域一个重要研究方向。为有效平衡计算效率和提取精度,提出一种集成小波变换与全局感知的轻量建筑提取网络。首先,将参数共享、星型运算和深度可分离卷积集成,提出一种星型共享深度卷积块,以高效准确地提取建筑物特征。其次,引入小波变换和频域空间注意力,提出一种高效边界增强模块,增强网络对建筑物边界特征的表征能力。最后,借助轻量级非局部注意力机制与层次特征交互策略,提出一种全局上下文感知模块,显著提升了层级特征的融合效果,增强了网络解码阶段整体感知能力。实验结果表明,所提出的网络在WHU和Inria两个公开建筑物提取数据集上的联合交并比(IoU)指标分别达到90.08%和79.16%,同时模型参数量(Params)为3.09M,每秒浮点运算数(FLOPs)为4.93G、推理速度达到30.24 FPS。与Swin Transformer、BuildFormer、SDSCUNet、EasyN⁃et、HDNet以及CaSaFormerNet等现有方法相比,该方法在保持低计算复杂度下,实现了更高的提取精度,在计算效率和提取精度之间实现了更好的平衡。 展开更多
关键词 建筑物提取 轻量级 边界增强 小波变换 全局上下文
在线阅读 下载PDF
融合边缘与全局特征的遥感影像显著性目标检测方法
19
作者 谢亚坤 赵耀纪 +5 位作者 涂佳星 夏瑞丰 冯德俊 刘苏凝 陈虹宇 朱军 《测绘学报》 北大核心 2025年第7期1265-1279,共15页
遥感影像显著性检测(SOD)能有效区分影像中的关键特征和区域,从而提升图像分析的精确度和处理效率。然而,由于遥感影像的复杂性,现有遥感影像SOD方法存在显著性目标定位不准、边界模糊、目标置信度弱等问题。为解决这些问题,本文提出了... 遥感影像显著性检测(SOD)能有效区分影像中的关键特征和区域,从而提升图像分析的精确度和处理效率。然而,由于遥感影像的复杂性,现有遥感影像SOD方法存在显著性目标定位不准、边界模糊、目标置信度弱等问题。为解决这些问题,本文提出了一种融合边缘与全局信息的遥感影像显著性目标检测方法。首先,设计了边缘特征增强模块,利用Sobel算子提取浅层特征图中的边缘信息,生成边界线索特征图,并融合边界注意力和空间、通道注意力,进一步增强局部特征表示,从而有效改善显著目标的边界模糊问题。然后,提出了全局上下文特征增强模块,通过全局平均池化和全连接层获取图像级语义信息,并结合空间注意力机制生成全局关联图,并以此为基础,利用多尺度注意力和上下文特征增强策略,提升显著目标的置信度和定位准确性。最后,为验证本文方法的有效性,在ORSSD数据集、EORSSD数据集及ORSI-4199数据集上进行了试验分析,M分别降低了0.0013~0.1205、0.001~0.1593和0.0035~0.1367,S_(α)分别提高了0.0057~0.2663、0.003~0.3366和0.0139~0.2403,F_(β)分别提高了0.0314~0.3391、0.0232~0.5178和0.0043~0.3289。结果表明,本文方法在检测精度和效率方面均显著优于现有方法,且能够有效应对遥感影像中的复杂场景和多变条件。 展开更多
关键词 遥感影像 显著性目标检测 边缘特征 全局信息
在线阅读 下载PDF
融合多视图特征的放射学报告生成
20
作者 欧佳乐 昝红英 +2 位作者 张坤丽 师相龙 马玉团 《计算机工程与应用》 北大核心 2025年第10期320-330,共11页
放射学报告生成涉及从多源图像中提取特征并将其转化为文本描述。当前的研究面临着多视图和不同长度报告的挑战,导致生成的临床报告准确性不足和语义不连贯。针对这些问题,提出了一种融合多视图特征的方法,通过从原始图像中进行多次局... 放射学报告生成涉及从多源图像中提取特征并将其转化为文本描述。当前的研究面临着多视图和不同长度报告的挑战,导致生成的临床报告准确性不足和语义不连贯。针对这些问题,提出了一种融合多视图特征的方法,通过从原始图像中进行多次局部特征提取和细粒度融合减少了信息丢失。通过标注工具获得并嵌入全局上下文表示,让模型在训练时使用更具概括性的文本,以获得更为流畅的描述。在IU X-Ray和MIMIC-CXR两个数据集上的实验表明,该方法在R2Gen模型上的应用使生成报告的质量得分平均提升了2.96个百分点。此外在自行构建的中文肺部CT报告数据集上进行了影像报告到诊断结论的生成实验,表现了该方法的通用性。 展开更多
关键词 放射学报告生成 多视图 细粒度融合 全局上下文
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部