The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned ba...The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.展开更多
The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is...The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.展开更多
The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biod...The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.展开更多
Juri is a biodiversity-rich primary forest in Bangladesh, which remains ecologically unexplored. We identified tree species and examined the richness, alpha(a)diversity and floristic similarity patterns within the i...Juri is a biodiversity-rich primary forest in Bangladesh, which remains ecologically unexplored. We identified tree species and examined the richness, alpha(a)diversity and floristic similarity patterns within the identified communities. Vegetation and environmental data were sampled in 120(0.04 ha) study plots. Tree communities were delimited by two-way indicator species analysis(TWINSPAN). In total, 78 tree species of 35 families and58 genera were identified. TWINSPAN identified six tree communities: A—Tricalysia singularis; B—Kydia calycina-Castanopsis tribuloides; C—Polyalthia simiarum-Duabanga grandiflora; D—Ficus roxburghii; E—Artocarpus lacucha; F—Artocarpus lacucha. Mean richness, Shannon and Gini-Simpson indices were highest for the Polyalthia simiarum-Duabanga grandiflora community, while Ficus roxburghii showed lowest diversity. Significant differences(p = 0.05) in three diversity indices were recorded between Polyalthia simiarum-Duabanga grandiflora and Ficus roxburghii. Tree compositional similarity was greatest between Kydia calycina-Castanopsis tribuloides and Polyalthia simiarum-Duabanga grandiflora(0.712).展开更多
文摘The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.
文摘The Gini-Simpson quadratic index is a classic measure of diversity, widely used by ecologists. As shown recently, however, this index is not suitable for the measurement of beta diversity when the number of species is very large. The objective of this paper is to introduce the Rich- Gini-Simpson quadratic index which preserves all the qualities of the classic Gini-Simpson index but behaves very well even when the number of species is very large. The additive partitioning of species diversity using the Rich-Gini- Simpson quadratic index and an application from island biogeography are analyzed.
文摘The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.
基金funded by the University Grant Commission (UGC), Bangladesh
文摘Juri is a biodiversity-rich primary forest in Bangladesh, which remains ecologically unexplored. We identified tree species and examined the richness, alpha(a)diversity and floristic similarity patterns within the identified communities. Vegetation and environmental data were sampled in 120(0.04 ha) study plots. Tree communities were delimited by two-way indicator species analysis(TWINSPAN). In total, 78 tree species of 35 families and58 genera were identified. TWINSPAN identified six tree communities: A—Tricalysia singularis; B—Kydia calycina-Castanopsis tribuloides; C—Polyalthia simiarum-Duabanga grandiflora; D—Ficus roxburghii; E—Artocarpus lacucha; F—Artocarpus lacucha. Mean richness, Shannon and Gini-Simpson indices were highest for the Polyalthia simiarum-Duabanga grandiflora community, while Ficus roxburghii showed lowest diversity. Significant differences(p = 0.05) in three diversity indices were recorded between Polyalthia simiarum-Duabanga grandiflora and Ficus roxburghii. Tree compositional similarity was greatest between Kydia calycina-Castanopsis tribuloides and Polyalthia simiarum-Duabanga grandiflora(0.712).