通过Gilch反应合成了结构新颖、含四官能团单元的超支化PPV聚合物P1~P3.聚合物的结构得到1 H NMR和元素分析结果的确证.通过热重分析(TGA)得知,该类非结晶相的聚合物热分解温度较高,分别为371.7、386.6和391.8℃.所合成的聚合物固态时...通过Gilch反应合成了结构新颖、含四官能团单元的超支化PPV聚合物P1~P3.聚合物的结构得到1 H NMR和元素分析结果的确证.通过热重分析(TGA)得知,该类非结晶相的聚合物热分解温度较高,分别为371.7、386.6和391.8℃.所合成的聚合物固态时的紫外吸收及荧光发射相对于液态的紫外吸收及荧光发射,波长有明显的红移现象,并且该聚合物具有宽吸收、窄发射的特征,在电致发光器件和聚合物太阳能电池器件中将有潜在的应用前景.展开更多
The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by N...The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). ^1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the "kebabs" of the two, 5-bis(4'- alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended n-conjugation polymer.展开更多
In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-m...In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.展开更多
文摘通过Gilch反应合成了结构新颖、含四官能团单元的超支化PPV聚合物P1~P3.聚合物的结构得到1 H NMR和元素分析结果的确证.通过热重分析(TGA)得知,该类非结晶相的聚合物热分解温度较高,分别为371.7、386.6和391.8℃.所合成的聚合物固态时的紫外吸收及荧光发射相对于液态的紫外吸收及荧光发射,波长有明显的红移现象,并且该聚合物具有宽吸收、窄发射的特征,在电致发光器件和聚合物太阳能电池器件中将有潜在的应用前景.
基金This work was supported by the National Natural Science Foundation of China (No. 20574064).
文摘The novel shish-kebab-type liquid crystalline cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s hybrid was synthesized through Gilch polymerization. Their structures and properties were characterized by NMR, GPC, DSC, X-ray diffraction and polarizing optical microscope (POM). ^1H-NMR investigation of the polymers indicates that the shish-kebab-structure has a strong ability to suppress the structural defects in the polymers. The polymers are enantiotropic liquid crystals. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The mesophase was identified by X-ray diffraction method. They showed not only a smectic LC phase, but also a strong green fluorescence in chloroform. The maximum absorption band of the "kebabs" of the two, 5-bis(4'- alkoxyphenyl)benzene at 280 nm did not appear in absorption spectra of the polymers. The same phenomena were also observed in the fluorescence spectra. These results imply that the polymers have formed a cross-conjugated uniform structure and achieved an extended n-conjugation polymer.
文摘In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.