As transparent electrodes,patterned silver nanowire(AgNW)networks suffer from noticeable pattern visibility,which is an unsettled issue for practical applications such as display.Here,we introduce a Gibbs-Thomson effe...As transparent electrodes,patterned silver nanowire(AgNW)networks suffer from noticeable pattern visibility,which is an unsettled issue for practical applications such as display.Here,we introduce a Gibbs-Thomson effect(GTE)-based patterning method to effectively reduce pattern visibility.Unlike conventional top-down and bottom-up strategies that rely on selective etching,removal,or deposition of AgNWs,our approach focuses on fragmenting nanowires primarily at the junctions through the GTE.This is realized by modifying AgNWs with a compound of diphenyliodonium nitrate and silver nitrate,which aggregates into nanoparticles at the junctions of AgNWs.These nanoparticles can boost the fragmentation of nanowires at the junctions under an ultralow temperature(75℃),allow pattern transfer through a photolithographic masking operation,and enhance plasmonic welding during UV exposure.The resultant patterned electrodes have trivial differences in transmittance(ΔT=1.4%)and haze(ΔH=0.3%)between conductive and insulative regions,with high-resolution patterning size down to 10μm.To demonstrate the practicality of this novel method,we constructed a highly transparent,optoelectrical interactive tactile e-skin using the patterned AgNW electrodes.展开更多
The hexagonal to orthorhombic(HO)transformation fromβ-Ni_(3)Sn_(2)(hexagonal)phase toα'-Ni_(3)Sn_(2)(orthorhombic)phase was confirmed in directionally solidified Sn−Ni peritectic alloys.It is shown that the reme...The hexagonal to orthorhombic(HO)transformation fromβ-Ni_(3)Sn_(2)(hexagonal)phase toα'-Ni_(3)Sn_(2)(orthorhombic)phase was confirmed in directionally solidified Sn−Ni peritectic alloys.It is shown that the remelting/resolidification process which is caused by both the temperature gradient zone melting(TGZM)and Gibbs−Thomson(G−T)effects can take place on secondary dendrites.Besides,the intersection angle between the primary dendrite stem and secondary branch(θ)is found to increase fromπ/3 toπ/2 as the solidification proceeds.This is the morphological feature of the HO transformation,which can change the diffusion distance of the remelting/resolidification process.Thus,a diffusion-based analytical model is established to describe this process through the specific surface area(S_(V))of dendrites.The theoretical prediction demonstrates that the remelting/resolidification process is restricted when the HO transformation occurs during peritectic solidification.In addition,the slope of the prediction curves is changed,indicating the variation of the local remelting/resolidification rates.展开更多
Wilhelm Ostwald first reported his studies of nucleation and crystallisation around 125 years ago[1].Amongst other observations,he found that the average crystal size within a saturated solution increases over time.Th...Wilhelm Ostwald first reported his studies of nucleation and crystallisation around 125 years ago[1].Amongst other observations,he found that the average crystal size within a saturated solution increases over time.This so-called‘ripening’occurs because of the Gibbs-Thomson effect,whereby material becomes increasingly soluble when located within an ever smaller crystal.In other words,a solution can be supersaturated in large crystals but undersaturated in small ones.展开更多
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(2024A1515030155,2022A1515010272,2024A1515012609,2023A1515011459)National Natural Science Foundation of China(61904067,62475101,62175094,62275109)+2 种基金open funding from the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-Sen University,OEMT-2022-KF-08)National Innovation and Entrepreneurship Training Program For Undergraduate(202410559004)Fundamental Research Funds for the Central Universities(11621405).
文摘As transparent electrodes,patterned silver nanowire(AgNW)networks suffer from noticeable pattern visibility,which is an unsettled issue for practical applications such as display.Here,we introduce a Gibbs-Thomson effect(GTE)-based patterning method to effectively reduce pattern visibility.Unlike conventional top-down and bottom-up strategies that rely on selective etching,removal,or deposition of AgNWs,our approach focuses on fragmenting nanowires primarily at the junctions through the GTE.This is realized by modifying AgNWs with a compound of diphenyliodonium nitrate and silver nitrate,which aggregates into nanoparticles at the junctions of AgNWs.These nanoparticles can boost the fragmentation of nanowires at the junctions under an ultralow temperature(75℃),allow pattern transfer through a photolithographic masking operation,and enhance plasmonic welding during UV exposure.The resultant patterned electrodes have trivial differences in transmittance(ΔT=1.4%)and haze(ΔH=0.3%)between conductive and insulative regions,with high-resolution patterning size down to 10μm.To demonstrate the practicality of this novel method,we constructed a highly transparent,optoelectrical interactive tactile e-skin using the patterned AgNW electrodes.
基金the support from the Natural Science Foundation of China(No.51871118)Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,China(No.LZUMMM2021005)+1 种基金the Science and Technology Project of Lanzhou City,China(No.2019-1-30)State Key Laboratory of Special Rare Metal Materials,China(No.SKL2020K003)。
文摘The hexagonal to orthorhombic(HO)transformation fromβ-Ni_(3)Sn_(2)(hexagonal)phase toα'-Ni_(3)Sn_(2)(orthorhombic)phase was confirmed in directionally solidified Sn−Ni peritectic alloys.It is shown that the remelting/resolidification process which is caused by both the temperature gradient zone melting(TGZM)and Gibbs−Thomson(G−T)effects can take place on secondary dendrites.Besides,the intersection angle between the primary dendrite stem and secondary branch(θ)is found to increase fromπ/3 toπ/2 as the solidification proceeds.This is the morphological feature of the HO transformation,which can change the diffusion distance of the remelting/resolidification process.Thus,a diffusion-based analytical model is established to describe this process through the specific surface area(S_(V))of dendrites.The theoretical prediction demonstrates that the remelting/resolidification process is restricted when the HO transformation occurs during peritectic solidification.In addition,the slope of the prediction curves is changed,indicating the variation of the local remelting/resolidification rates.
基金Stephen D.P.Fielden is a Royal Society Dorothy Hodgkin Fellow(DHF∖R1∖241133).
文摘Wilhelm Ostwald first reported his studies of nucleation and crystallisation around 125 years ago[1].Amongst other observations,he found that the average crystal size within a saturated solution increases over time.This so-called‘ripening’occurs because of the Gibbs-Thomson effect,whereby material becomes increasingly soluble when located within an ever smaller crystal.In other words,a solution can be supersaturated in large crystals but undersaturated in small ones.