期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于轻量化YOLOv7-tiny的铝材表面缺陷检测方法 被引量:3
1
作者 席凌飞 伊力哈木·亚尔买买提 《科学技术与工程》 北大核心 2024年第27期11786-11794,共9页
为了提高铝材表面缺陷小目标检测效率,轻量化检测网络,提出一种基于改进YOLOv7-tiny的铝材表面缺陷检测算法。首先,在网络中加入SimAM(similarity-based attention module)注意力机制,使网络更多的注意到有用的信息,抑制图像中无效样本... 为了提高铝材表面缺陷小目标检测效率,轻量化检测网络,提出一种基于改进YOLOv7-tiny的铝材表面缺陷检测算法。首先,在网络中加入SimAM(similarity-based attention module)注意力机制,使网络更多的注意到有用的信息,抑制图像中无效样本的干扰。其次,将主干网络中的sppcspc结构改进为Ghostsppcspc,减少的模型训练时的参数冗余,同时在检测层用GSconv代替普通卷积,轻量化网络的同时加强特征融合,提升网络检测精度,最后引入NWD(normalized wasserstein distance)结合原有的CIOU(complete intersection over union)损失函数,提升网络对小目标检测精度。将改进算法应用到天池铝材数据集中进行验证,实验结果表明,该模型能够有效识别铝型材表面不同种类的缺陷,较原YOLOv7-tiny算法mAP提高10.1%,参数量较原模型下降6.4%,计算量较原模型下降12.2%。所提方法实现了轻量化网络模型的同时,能够满足目前铝型材工厂生产现场缺陷检测要求。 展开更多
关键词 缺陷检测 YOLO v7-tiny 注意力机制 NWD GSconv ghostsppcspc
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部