The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target...The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods.展开更多
Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large ove...Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.展开更多
针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开...针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开销提升模型在光线变化、遮挡等干扰环境下的性能。在颈部层使用自适应感受野和空间通道混合注意力,提升神经元对不同尺度特征的适应性,应对人体形变、视角变化等干扰。引入EIoU损失函数,加速收敛提升训练精度。在公开数据集Le2i Fall Detection Dataset和UR Fall Detection上,精确率、召回率、mAP0.5和mAP(0.5:0.95)相比YOLOv5s分别提高4.0%,4.2%,2.9%和4.3%,参数量降低38.6%。该算法在多种应用场景下都保持较高检测精度,参数量较低,满足实际应用场景部署要求。展开更多
Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a...Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases.展开更多
Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents,as well as being of great significance to construction safety.However,for a variety of reasons,construction wor...Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents,as well as being of great significance to construction safety.However,for a variety of reasons,construction workers nowadays may not strictly enforce the rules of wearing safety helmets.In order to strengthen the safety of construction site,the traditional practice is to manage it through methods such as regular inspections by safety officers,but the cost is high and the effect is poor.With the popularization and application of construction site video monitoring,manual video monitoring has been realized for management,but the monitors need to be on duty at all times,and thus are prone to negligence.Therefore,this study establishes a lightweight model YOLO_CA based on YOLOv5 for the automatic detection of construction workers’helmet wearing,which overcomes the shortcomings of the current manual monitoring methods that are inefficient and expensive.The coordinate attention(CA)addition to the YOLOv5 backbone strengthens detection accuracy in complex scenes by extracting critical information and suppressing non-critical information.Further parameter compression with deeply separable convolution(DWConv).In addition,to improve the feature representation speed,we swap out C3 with a Ghost module,which decreases the floating-point operations needed for feature channel fusion,and CIOU_Loss was substituted with EIOU_Loss to enhance the algorithm’s localization accuracy.Therefore,the original model needs to be improved so as to enhance the detection of safety helmets.The experimental results show that the YOLO_CA model achieves good results in all indicators compared with the mainstream model.Compared with the original model,the mAP value of the optimized model increased by 1.13%,GFLOPs cut down by 17.5%,and there is a 6.84%decrease in the total model parameters,furthermore,the weight size cuts down by 4.26%,FPS increased by 39.58%,and the detection effect and model size of this model can meet the requirements of lightweight embedding.展开更多
基金This work was funded by the China Postdoctoral Science Foundation(No.2019M661319)Heilongjiang Postdoctoral Scientific Research Developmental Foundation(No.LBH-Q17042)+1 种基金Fundamental Research Funds for the Central Universities(3072020CFQ0602,3072020CF0604,3072020CFP0601)2019 Industrial Internet Innovation and Development Engineering(KY1060020002,KY10600200008).
文摘The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods.
基金supported by the National Natural Science Foundation of China(No.52074305)Henan Scientific and Technological Research Project(No.212102210005)Open Fund of Henan Engineering Laboratory for Photoelectric Sensing and Intelligent Measurement and Control(No.HELPSIMC-2020-00X).
文摘Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system.
文摘针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开销提升模型在光线变化、遮挡等干扰环境下的性能。在颈部层使用自适应感受野和空间通道混合注意力,提升神经元对不同尺度特征的适应性,应对人体形变、视角变化等干扰。引入EIoU损失函数,加速收敛提升训练精度。在公开数据集Le2i Fall Detection Dataset和UR Fall Detection上,精确率、召回率、mAP0.5和mAP(0.5:0.95)相比YOLOv5s分别提高4.0%,4.2%,2.9%和4.3%,参数量降低38.6%。该算法在多种应用场景下都保持较高检测精度,参数量较低,满足实际应用场景部署要求。
基金supported by the Changsha Municipal Natural Science Foundation,China(kq2014160)in part by the Key Projects of Department of Education of Hunan Province,China(21A0179)+1 种基金the Hunan Key Laboratory of Intelligent Logistics Technology,China(2019TP1015)the National Natural Science Foundation of China(61902436)。
文摘Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases.
基金funded by Guizhou Optoelectronic Information and Intelligent Application International Joint Research Center(Qiankehe Platform Talents No.5802[2019]).
文摘Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents,as well as being of great significance to construction safety.However,for a variety of reasons,construction workers nowadays may not strictly enforce the rules of wearing safety helmets.In order to strengthen the safety of construction site,the traditional practice is to manage it through methods such as regular inspections by safety officers,but the cost is high and the effect is poor.With the popularization and application of construction site video monitoring,manual video monitoring has been realized for management,but the monitors need to be on duty at all times,and thus are prone to negligence.Therefore,this study establishes a lightweight model YOLO_CA based on YOLOv5 for the automatic detection of construction workers’helmet wearing,which overcomes the shortcomings of the current manual monitoring methods that are inefficient and expensive.The coordinate attention(CA)addition to the YOLOv5 backbone strengthens detection accuracy in complex scenes by extracting critical information and suppressing non-critical information.Further parameter compression with deeply separable convolution(DWConv).In addition,to improve the feature representation speed,we swap out C3 with a Ghost module,which decreases the floating-point operations needed for feature channel fusion,and CIOU_Loss was substituted with EIOU_Loss to enhance the algorithm’s localization accuracy.Therefore,the original model needs to be improved so as to enhance the detection of safety helmets.The experimental results show that the YOLO_CA model achieves good results in all indicators compared with the mainstream model.Compared with the original model,the mAP value of the optimized model increased by 1.13%,GFLOPs cut down by 17.5%,and there is a 6.84%decrease in the total model parameters,furthermore,the weight size cuts down by 4.26%,FPS increased by 39.58%,and the detection effect and model size of this model can meet the requirements of lightweight embedding.