期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Image-to-Image Style Transfer Based on the Ghost Module
1
作者 Yan Jiang Xinrui Jia +3 位作者 Liguo Zhang Ye Yuan Lei Chen Guisheng Yin 《Computers, Materials & Continua》 SCIE EI 2021年第9期4051-4067,共17页
The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target... The technology for image-to-image style transfer(a prevalent image processing task)has developed rapidly.The purpose of style transfer is to extract a texture from the source image domain and transfer it to the target image domain using a deep neural network.However,the existing methods typically have a large computational cost.To achieve efficient style transfer,we introduce a novel Ghost module into the GANILLA architecture to produce more feature maps from cheap operations.Then we utilize an attention mechanism to transform images with various styles.We optimize the original generative adversarial network(GAN)by using more efficient calculation methods for image-to-illustration translation.The experimental results show that our proposed method is similar to human vision and still maintains the quality of the image.Moreover,our proposed method overcomes the high computational cost and high computational resource consumption for style transfer.By comparing the results of subjective and objective evaluation indicators,our proposed method has shown superior performance over existing methods. 展开更多
关键词 Style transfer generative adversarial networks ghost module attention mechanism human visual habits
在线阅读 下载PDF
Ghost-Retina Net:Fast Shadow Detection Method for Photovoltaic Panels Based on Improved Retina Net 被引量:1
2
作者 Jun Wu Penghui Fan +1 位作者 Yingxin Sun Weifeng Gui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1305-1321,共17页
Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large ove... Based on the artificial intelligence algorithm of RetinaNet,we propose the Ghost-RetinaNet in this paper,a fast shadow detection method for photovoltaic panels,to solve the problems of extreme target density,large overlap,high cost and poor real-time performance in photovoltaic panel shadow detection.Firstly,the Ghost CSP module based on Cross Stage Partial(CSP)is adopted in feature extraction network to improve the accuracy and detection speed.Based on extracted features,recursive feature fusion structure ismentioned to enhance the feature information of all objects.We introduce the SiLU activation function and CIoU Loss to increase the learning and generalization ability of the network and improve the positioning accuracy of the bounding box regression,respectively.Finally,in order to achieve fast detection,the Ghost strategy is chosen to lighten the size of the algorithm.The results of the experiment show that the average detection accuracy(mAP)of the algorithm can reach up to 97.17%,the model size is only 8.75 MB and the detection speed is highly up to 50.8 Frame per second(FPS),which can meet the requirements of real-time detection speed and accuracy of photovoltaic panels in the practical environment.The realization of the algorithm also provides new research methods and ideas for fault detection in the photovoltaic power generation system. 展开更多
关键词 Deep learning intensive object detection photovoltaic panel shadow ghost module retinanet
在线阅读 下载PDF
改进YOLOv5s的人员跌倒检测算法
3
作者 吴迪 王向前 《佳木斯大学学报(自然科学版)》 CAS 2024年第9期6-11,共6页
针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开... 针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开销提升模型在光线变化、遮挡等干扰环境下的性能。在颈部层使用自适应感受野和空间通道混合注意力,提升神经元对不同尺度特征的适应性,应对人体形变、视角变化等干扰。引入EIoU损失函数,加速收敛提升训练精度。在公开数据集Le2i Fall Detection Dataset和UR Fall Detection上,精确率、召回率、mAP0.5和mAP(0.5:0.95)相比YOLOv5s分别提高4.0%,4.2%,2.9%和4.3%,参数量降低38.6%。该算法在多种应用场景下都保持较高检测精度,参数量较低,满足实际应用场景部署要求。 展开更多
关键词 跌倒检测 YOLOv5s ghost module 自适应感受野 EIoU
在线阅读 下载PDF
面向石墨电极标签识别的轻量化网络LGSNet
4
作者 梁倩 刘名果 +3 位作者 王亮 陈立家 赵翔宇 白埔州 《电脑与信息技术》 2024年第1期86-89,共4页
轻量化网络已成为面向工业场景部署的关键技术。为进一步提升Ghost module的特征提取能力并减少参数量,提出了一种改进的S-Ghost瓶颈模块(Small Ghost Bottleneck)。此瓶颈模块采用1×1卷积通道与Ghost module并联的结构,缩减Ghost ... 轻量化网络已成为面向工业场景部署的关键技术。为进一步提升Ghost module的特征提取能力并减少参数量,提出了一种改进的S-Ghost瓶颈模块(Small Ghost Bottleneck)。此瓶颈模块采用1×1卷积通道与Ghost module并联的结构,缩减Ghost module的通道数以压缩参数量,并用与之并联的1×1卷积进行通道扩充;在模块输出端引入通道混洗(Channel Shuffle)操作以保证通道间信息交互。实验结果表明,利用该瓶颈结构设计的图像分类网络LGSNet (Light Ghost Networks,LGSNet),其计算量和参数量显著降低,同时网络精度与推理速度未受影响,甚至在一些测试中取得最优,此网络设计满足工业需求。这为面向工业场景的轻量化网络架构设计提供了新的解决方案和思路。 展开更多
关键词 石墨电极 轻量化网络 ghost module S-ghost LGSNet
在线阅读 下载PDF
Identification of banana leaf disease based on KVA and GR-ARNet
5
作者 Jinsheng Deng Weiqi Huang +3 位作者 Guoxiong Zhou Yahui Hu Liujun Li Yanfeng Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3554-3575,共22页
Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a... Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases. 展开更多
关键词 banana leaf diseases image denoising ghost module Res Ne St module Convolutional Neural Networks GR-ARNet
在线阅读 下载PDF
融合YOLO v3与改进ReXNet的手势识别方法研究 被引量:1
6
作者 魏小玉 焦良葆 +2 位作者 刘子恒 汤博宇 孟琳 《计算机测量与控制》 2023年第7期278-283,289,共7页
工程应用中的手势识别需要较高的实时性和准确性,而现场环境通常无法提供足够的计算能力,采用轻量化神经网络在解决了上述问题的同时,还能达到与深度神经网络相当的识别效果;为此,提出一种基于改进轻量化神经网络的手势识别方法;该方法... 工程应用中的手势识别需要较高的实时性和准确性,而现场环境通常无法提供足够的计算能力,采用轻量化神经网络在解决了上述问题的同时,还能达到与深度神经网络相当的识别效果;为此,提出一种基于改进轻量化神经网络的手势识别方法;该方法改进用于手部关键点检测的ReXNet网络结构,以改善骨骼点的局部关注;同时将关键点检测损失函数MSE替换为Huber loss,以提升离群点的抗干扰性;实验环境搭建基于普通单目镜头捕获图像后,经YOLO v3手部识别模型和改进的ReXNet关键点检测模型,并根据约束手部骨骼关键点的向量角而定义的不同手势,最后达到实时检测的效果;改进模型在RWTH公开数据集上的测试结果表明,改进后的手势识别方法的检测准确度较改进前整体提升2.62%,达到了96.18%,且收敛速度更快。 展开更多
关键词 手势识别 关键点检测 YOLO v3 ReXNet ghost module
在线阅读 下载PDF
基于改进YOLO v5的手语字母语的识别方法 被引量:2
7
作者 潘格 许有熊 刘晓锋 《南京工程学院学报(自然科学版)》 2023年第1期27-32,共6页
针对传统手势识别方法计算量大、难以实时识别的问题,研究一种基于改进YOLO v5的轻量化手语检测识别方法.首先用Mobilenet v3 Small替换YOLO v5的主干网络;然后利用Ghost Conv模块和C3Ghost模块替换YOLO v5颈部网络中的Conv和Ghost模块... 针对传统手势识别方法计算量大、难以实时识别的问题,研究一种基于改进YOLO v5的轻量化手语检测识别方法.首先用Mobilenet v3 Small替换YOLO v5的主干网络;然后利用Ghost Conv模块和C3Ghost模块替换YOLO v5颈部网络中的Conv和Ghost模块;最后通过YOLO v5的预测部分生成预测框.在此基础上,利用k means算法生成适合手势的先验框,加快网络检测手势.与其他网络算法对比分析可知,改进算法在保持精度基本不变的情况下可大幅减少网络参数,提高网络的检测速度. 展开更多
关键词 Mobilenet YOLO v5 ghost module 轻量化 手语识别
在线阅读 下载PDF
Detection of Safety Helmet-Wearing Based on the YOLO_CA Model 被引量:2
8
作者 Xiaoqin Wu Songrong Qian Ming Yang 《Computers, Materials & Continua》 SCIE EI 2023年第12期3349-3366,共18页
Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents,as well as being of great significance to construction safety.However,for a variety of reasons,construction wor... Safety helmets can reduce head injuries from object impacts and lower the probability of safety accidents,as well as being of great significance to construction safety.However,for a variety of reasons,construction workers nowadays may not strictly enforce the rules of wearing safety helmets.In order to strengthen the safety of construction site,the traditional practice is to manage it through methods such as regular inspections by safety officers,but the cost is high and the effect is poor.With the popularization and application of construction site video monitoring,manual video monitoring has been realized for management,but the monitors need to be on duty at all times,and thus are prone to negligence.Therefore,this study establishes a lightweight model YOLO_CA based on YOLOv5 for the automatic detection of construction workers’helmet wearing,which overcomes the shortcomings of the current manual monitoring methods that are inefficient and expensive.The coordinate attention(CA)addition to the YOLOv5 backbone strengthens detection accuracy in complex scenes by extracting critical information and suppressing non-critical information.Further parameter compression with deeply separable convolution(DWConv).In addition,to improve the feature representation speed,we swap out C3 with a Ghost module,which decreases the floating-point operations needed for feature channel fusion,and CIOU_Loss was substituted with EIOU_Loss to enhance the algorithm’s localization accuracy.Therefore,the original model needs to be improved so as to enhance the detection of safety helmets.The experimental results show that the YOLO_CA model achieves good results in all indicators compared with the mainstream model.Compared with the original model,the mAP value of the optimized model increased by 1.13%,GFLOPs cut down by 17.5%,and there is a 6.84%decrease in the total model parameters,furthermore,the weight size cuts down by 4.26%,FPS increased by 39.58%,and the detection effect and model size of this model can meet the requirements of lightweight embedding. 展开更多
关键词 Safety helmet CA YOLOv5 ghost module
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部