Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their d...Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.展开更多
Under the national"Dual Carbon"strategy,the development and utilization of stable and efficient renewable energy has become pivotal for energy structure transformation.Shandong Province hosts abundant geothe...Under the national"Dual Carbon"strategy,the development and utilization of stable and efficient renewable energy has become pivotal for energy structure transformation.Shandong Province hosts abundant geothermal resources with significant potential for large-scale exploitation.This paper systematically reviews the technological framework and application prospects of geothermal energy development in Shandong.First,the geological model of the geothermal system,centered on the"source-reservoir-caprock-conduit"framework,is elucidated.The characteristics of major thermal reservoirs,including the Neogene Guantao Formation,Paleogene Dongying Formation,and Cambrian-Ordovician strata,are analyzed in the context of Shandong’s geologic setting.Subsequently,advanced geophysical exploration methodologies—such as Magnetotelluric(MT),Controlled-Source Audio-Frequency Magnetotellurics(CSAMT),and Wide-Field Electromagnetic Method(WFEM)—are highlighted for their critical roles in precisely delineating thermal reservoirs and identifying heat-controlling structures,significantly improving exploration efficiency.In terms of utilization,this study examines diversified application models guided by the"cascade utilization"principle,emphasizing high-efficiency geothermal heating technologies(e.g.,geothermal heat pump systems)and power generation technologies(dry steam,fl ash steam,and binary cycle systems)tailored to resources of varying temperatures.The review demonstrates that technological innovations and mature application frameworks are driving the geothermal industry in Shandong toward high-quality development,providing robust support for regional energy security and low-carbon transition.展开更多
To understand the applicability of high-temperature preformed particle gel(HT-PPG)for control of short-circuiting in enhanced geothermal systems(EGSs),core flooding experiments were conducted on fractured granite core...To understand the applicability of high-temperature preformed particle gel(HT-PPG)for control of short-circuiting in enhanced geothermal systems(EGSs),core flooding experiments were conducted on fractured granite cores under varying fracture widths,gel particle sizes and swelling ratios.Key parameters such as injection pressure,water breakthrough pressure,and residual resistance factor were measured to evaluate HT-PPG performance.The gel exhibited strong injectability,entering granite fractures at pressure gradients as low as 0.656 MPa/m;HT-PPG yields a superior sealing performance by significantly reducing the permeability;and dehydration occurs during HT-PPG propagation,with a dehydration ratio ranging from 4.71%to 11.36%.This study reveals that HT-PPG can be injected into geothermal formations with minimal pressure yet provides strong resistance to breakthrough once in place.This balance of injectability and sealing strength makes HT-PPG effective for addressing thermal short-circuiting in EGS reservoirs.展开更多
The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary ...The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins.展开更多
Geothermal exploration and development in North Africa have advanced significantly,driven by the region's rich geothermal resources and rising energy demand.The countries of Mauritania,Morocco,Algeria,Tunisia,Liby...Geothermal exploration and development in North Africa have advanced significantly,driven by the region's rich geothermal resources and rising energy demand.The countries of Mauritania,Morocco,Algeria,Tunisia,Libya,and Egypt are located near tectonic plate boundaries(African and Eurasian plates),giving them substantial geothermal potential.Various exploration activities,including geological surveys and geophysical studies,have been conducted to assess geothermal reservoirs and identify suitable development sites.This article reviews the progress made in geothermal exploration across the region,highlighting the key activities undertaken to evaluate geothermal resources.It also explores how government policies have played a critical role either in fostering or in freezing geothermal development.The different conducted assessments such as analyzing geological structures,hydrothermal systems,and subsurface temperatures lead to identify suitable sites for geothermal development and improve the understanding of subsurface conditions and ongoing projects.Today,some countries in North Africa are positioning themselves to become important players in the global geothermal energy landscape,and with continued investment and concerted efforts,the region has the potential to emerge as a prominent player in the global geothermal energy landscape.展开更多
The development of machine learning and deep learning algorithms as well as the improvement ofhardware arithmetic power provide a rare opportunity for logging big data private cloud.With the deepeningof exploration an...The development of machine learning and deep learning algorithms as well as the improvement ofhardware arithmetic power provide a rare opportunity for logging big data private cloud.With the deepeningof exploration and development and the requirements of low-carbon development,the focus of exploration anddevelopment in the oil and gas industry is gradually shifting to the exploration and development of renewableenergy sources such as deep sea,deep earth and geothermal energy.The traditional petrophysical evaluation andinterpretation model has encountered great challenges in the face of new evaluation objects.To establish a distributedlogging big data private cloud platform with a unified learning model as the key,which realizes the distributed storageand processing of logging big data,and enables the learning of brand-new knowledge patterns from multi-attributedata in the large function space in the unified logging learning model integrating the expert knowledge and the datamodel,so as to solve the problem of geoengineering evaluation of geothermal fields.Based on the research ideaof“logging big data cloud platform---unified logging learning model---large function space---knowledge learning&discovery---application”,the theoretical foundation of unified learning model,cloud platform architecture,datastorage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storageand processing of data and learning algorithms.New knowledge of geothermal evaluation is found in a large functionspace and applied to Geo-engineering evaluation of geothermal fields.The examples show its good application in theselection of logging series in geothermal fields,quality control of logging data,identification of complex lithologyin geothermal fields,evaluation of reservoir fluids,checking of associated helium,evaluation of cementing quality,evaluation of well-side fractures,and evaluation of geothermal water recharge under the remote logging module ofthe cloud platform.The first and second cementing surfaces of cemented wells in geothermal fields were evaluated,as well as the development of well-side distal fractures,fracture extension orientation.According to the well-sidefracture communication to form a good fluid pathway and large flow rate and long flow diameter of the thermalstorage fi ssure system,the design is conducive to the design of the recharge program of geothermal water.展开更多
Developing hydrothermal resources in highly conductive karst aquifers at deep mine floors is regarded as a potential approach to achieving the co-development of coal and geothermal resources.However,the heat transfer ...Developing hydrothermal resources in highly conductive karst aquifers at deep mine floors is regarded as a potential approach to achieving the co-development of coal and geothermal resources.However,the heat transfer potential of the fracture system in the target reservoir under mining activities remains in suspense.Hence,a coupled thermal-hydraulic-mechanical model was developed for the karst reservoir of Anju coal mine in China,considering non-isothermal convective heat transfer in fractures.This model examined the influence of stress redistribution due to different mining distances(MD)on the effective flow channel length/density and the high/low-aperture fracture distribution.The dynamic heat generation characteristics of the geothermal reservoir were evaluated.Key findings include:Mining-induced stress creates interlaced high-aperture and low-aperture fracture zones below the goaf.Within these interlaced zones,the combined effect of high-and low-aperture fractures restricts the effective flow channel length/density of the fracture network.This contraction of the flow field leads to a significant decline in production flow rate,which consequently reduces both the production flow rate and power as MD increases.This work represents the study of mining disturbances on geothermal production,providing a theoretical foundation for the co-development of coal and geothermal resources.展开更多
As mining depth increases,the temperature of the surrounding rock rises,drawing global attention to the potential for geothermal energy extraction from high-temperature water stored in collapsed rock masses-a prospect...As mining depth increases,the temperature of the surrounding rock rises,drawing global attention to the potential for geothermal energy extraction from high-temperature water stored in collapsed rock masses-a prospect that offers both promise and challenges.In response,this study proposes a functional backfilling method using mining solid waste to construct a high-porosity heat extraction space.The research integrates experiments,theoretical analysis,and simulations to examine the mechanical and permeability properties of solid waste backfill materials.It further aims to elucidate how flow velocity and initial temperature influence the evolution of the temperature field and the thermal performance.Results indicate that the backfill material achieves optimal mechanical strength with a glass fiber content of 10‰ and a length of 6 mm.Furthermore,the permeability of the solid waste backfill demonstrates a quadratic relationship with both axial and confining pressure.During the recovery stage,the temperature in the heat extraction space remains lower than that of the surrounding rock,with geothermal energy being extracted via convective heat transfer between the water medium and the rock.The amount of heat extracted shows a positive correlation with the flow velocity of the water medium and a negative correlation with its initial temperature.展开更多
The Beijing-Tianjin-Hebei Plain is among the regions in China that feature the largest scale and the fastest growth in medium and deep geothermal heating.Based on tests of 82 geothermal fluid samples from 7 geothermal...The Beijing-Tianjin-Hebei Plain is among the regions in China that feature the largest scale and the fastest growth in medium and deep geothermal heating.Based on tests of 82 geothermal fluid samples from 7 geothermal fields in Hebei Province,2 geothermal fields in Henan Province,and 2 geothermal fields in Shandong Province,and combined with previous studies on the chemical characteristics of karst geothermal water in Beijing and Tianjin,this paper systematically analyzes the migration characteristics of geothermal fluids in karst geothermal reservoirs within the Beijing-Tianjin-Hebei Plain.The hydrochemical characteristics of karst geothermal water in the research areas exhibit certain differences.The geothermal water in Hebei is more mature than that in its neighboring provinces.The distribution of total dissolved solids(TDS)and strontium elements in the area is characterized by being low in the north and south and high in the middle,suggesting that the overall flow direction of geothermal fluid is from the north and south towards the middle.Combined with the groundwater flow field and the changing trend of the hydrochemical characteristics of geothermal wells along the geological section,a geothermal water migration model has been established.The geothermal fluids originating from Taihang Mountain,Yanshan Mountain,and Western Shandong Mountain enter the basin and continue to migrate towards the central part of the basin along water-conducting faults.However,the migration characteristics of geothermal fluids with the same supply direction are not identical.The geothermal fluids from Taihang Mountain are cut off by the Niudong Fault in the north and terminate in the central uplift belt of the Jizhong Depression,while in the south,they enter the east of the Jizhong Depression relatively quickly along the Hengshui Conversion Belt.The geothermal fluids from Yanshan Mountain migrate into the basin along the Cangdong Fault,yet this fault also disrupts the hydraulic connection between the tectonic units.Considering the effective dynamic conditions,it is recommended to further expand the scale of the scientific development and utilization of geothermal energy in the geothermal water catchment areas around Xiongxian County and southwest Cangzhou City.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during min...As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during mining to decrease the min-ing workface temperature while also developing geothermal energy.This method is called the co-exploitation of mine and geothermal energy(CMGE).The geothermal development may precipitate the large-scale failure of the nearby fault zone during the mining process.However,the evolution of shear slide and shear failure of fault under geothermal production/rein-jection during mining is missing.Therefore,a fully-coupled hydraulic mechanism(HM)double-medium model for CMGE was developed based on the measured data of the Chensilou mine.A comparative analysis of the mechanical response of fault between CMGE and single mining was conducted.The disturbance of geothermal production pressure and reinjection pressure under mining on fault stability were respectively expounded.The results indicate that:(1)The disturbance of geo-thermal reinjection amplifies the disturbance of mining on fault stability.The amplified effect resulted in a normal stress drop of the fault,further leading to a substantial increase in shear slide distance,failure area,and cumulative seismic moment of fault compared with the single mining process.(2)As the distance of reinjection well to the fault decreases,the fault failure intensity increases.Setting the production well within the fault is advantageous for controlling fault stability under CMGE.(3)The essence of the combined disturbance of CMGE on the nearby fault is the overlay of tensile stress disturbance on the fault rock mass of the mining and geothermal reinjection.Though the geothermal reinjection causes a minor normal stress drop of fault,it can result in a more serious fault failure under CMGE.This paper supplies a significant gap in understanding thenearby faults failure under CMGE.展开更多
Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corro...Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.展开更多
This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms an...This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms and influencing factors.The findings indicate that the overall abundance of ^(222)Rn in geothermal fluids across the region is relatively low.Geothermal radon mineral water is primarily located within banded thermal reservoirs associated with bedrock fracture structures in the Ludong and Luxi uplift geothermal zones.The study reveals that the ionic composition,radioactivity intensity,and extent of water-rock interactions exert only effects in the concentration of ^(222)Rn in geothermal fluids.The formation of geothermal radon mineral water is predominantly governed by“fracture-controlled”mechanisms,with thermal reservoir lithology,fracture tectonics,and seismic activity serving as key determinants.Additionally,the enrichment of ^(222)Rn in geothermal fluids is influenced by factors such as geothermal fluid temperature,depth of occurrence,cap rock thickness,and alteration processes.The genetic mechanisms of geothermal radon mineral water can be categorized into two types:„native‟and„composite‟.These findings provide critical insights into the exploration and development of geothermal radon mineral water resources in Shandong and similar regions.展开更多
Hydraulic fracturing then fluid circulation in enhanced geothermal system(EGS)reservoirs have been shown to induce seismicity remote from the stimulation-potentially generated by the distal projection of thermoporoela...Hydraulic fracturing then fluid circulation in enhanced geothermal system(EGS)reservoirs have been shown to induce seismicity remote from the stimulation-potentially generated by the distal projection of thermoporoelastic stresses.We explore this phenomenon by evaluating stress perturbations resulting from stimulation of a single stage of hydraulic fracturing that is followed by thermal depletion of a prismatic zone adjacent to the hydraulic fracture.We use Coulomb failure stress to assess the effect of resulting stress perturbations on instability on adjacent critically-stressed faults.Results show that hydraulic fracturing in a single stage is capable of creating stress perturbations at distances to 1000 m that reach 10^(-5)-10^(-4)MPa.At a closer distance,the magnitude of stress perturbations increases even further.The stress perturbation induced by temperature depletion could also reach 10^(-3)-10^(-2)MPa within 1000 m-much higher than that by hydraulic fracturing.Considering that a critical change in Coulomb failure stress for fault instability is 10^(-2)MPa,a single stage of hydraulic fracturing and thermal drawdown are capable of reactivating critically-stressed faults at distances within 200 m and 1000 m,respectively.These results have important implications for understanding the distribution and magnitudes of stress perturbations driven by thermoporoelastic effects and the associated seismicity during the simulation and early production of EGS reservoirs.展开更多
Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce gree...Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce greenhouse gases and support ecological balance.In this study,geographic information system(GIS)predictive analysis was employed to explore geothermal prospects,promoting environmental sustainability by reducing the dependence on fossil energy resources.Spatial and statistical analysis including the attribute correlation analysis was used to evaluate the relationship between exploration data and geothermal energy resources represented by hot springs.The weighted sum model was then used to develop geothermal predictive maps while the accuracy of prediction was determined using the receiver operating characteristic/area under curve(ROC/AUC)analysis.Based on the attribute correlation analysis,exploration data relating to geological structures,host rock(Asu River Group)and sedimentary contacts were the most critical parameters for mapping geothermal resources.These parameters were characterized by a statistical association of 0.52,0.48,and 0.46 with the known geothermal occurrences.Spatial data integration reveals the central part of the study location as the most prospective zone for geothermal occurrences.This zone occupies 14.76%of the study location.Accuracy assessment using the ROC/AUC analysis suggests an efficiency of 81.5%for the weight sum model.GIS-based multi-criteria analysis improves the identification and evaluation of geothermal resources,leading to better decision-making.展开更多
The safe and efficient development of geothermal energy is a key driver of the energy revolution and environmental governance in this century.To understand the effect of water driving pressure on drilling safety and h...The safe and efficient development of geothermal energy is a key driver of the energy revolution and environmental governance in this century.To understand the effect of water driving pressure on drilling safety and hydraulic fracturing efficiency during the development of geothermal energy under varying reservoir temperatures,dynamic compression tests were conducted on granite samples subjected to thermal treatment(25,100,200,300,400 and 600℃)and subsequent forced water absorption(0,4,8,12 MPa)using a split Hopkinson pressure bar system.The results indicate that a higher water driving pressure exacerbates the deterioration of dynamic compressive strength with increasing temperature,while it enhances the rate dependence of dynamic compressive strength,except at 600℃.The dynamic increase factor(DIF)of dynamic compressive strength vs.strain rate is determined by both temperature and water driving pressure.A prediction model for the deterioration of dynamic compressive strength considering reservoir temperature and water driving pressure is proposed for geothermal reservoirs.While the splitting failure of samples remains unchanged,crack density increases with increasing temperature and water driving pressure,exhibiting multiscale failure cracks parallel to the loading direction.The structure effective strength model,the wing-crack propagation model,the effect of pore water pressure on dynamic stress intensity factor,and the dynamic response of forced absorbed water can collectively reveal the response mechanisms of dynamic strength.Based on the experimental findings,implications for safe and productive geothermal energy development are discussed,with particular attention to the effect of drilling fluid leakage on wellbore stability and the impact of residual fracturing fluid after backflow on repeated fracturing.This study has important reference value for understanding dynamic wellbore stability under drilling disturbance loads and for the design of repeated dynamic hydraulic fracturing schemes in geothermal energy development.展开更多
An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as...An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as the Williston Basin in North Dakota-are considered viable candidates for EGS development due to their broad geographic extent and moderate geothermal potential.Notably,depleted or non-productive oil wells within these basins offer a cost-effective opportunity for EGS implementation as they can be repurposed,thereby significantly reducing the need for new drilling.This study evaluates the feasibility of EGS deployment in McKenzie County,North Dakota.Core samples from five partially abandoned or dry oil wells associated with production from the Red River Formation were obtained from the Core Library of the North Dakota Geological Survey.These samples,spanning the entire thickness of the formation,were sectioned and polished at defined depth intervals for detailed analyses and precise measurements of key reservoir properties critical to geothermal assessment.Several parameters were analyzed to assess the geothermal viability of these wells,including formation temperature,temperature gradient,porosity,thermal conductivity,energy storage potential,and estimated power output via the Organic Rankine Cycle(ORC).The results demonstrate significant depth-dependent variations in thermal and petrophysical properties.Specifically,the depth range of 4000-4500 m is identified as a promising target for EGS stimulation since it is characterized by elevated temperatures,high thermal conductivity,favorable temperature gradients,and sufficient porosity-all essential properties for enhancing permeability through hydraulic fracturing.Furthermore,the calculated energy content and potential ORC power output at these depths indicate that effective geothermal energy extraction is technically feasible.This suggests a compelling opportunity to repurpose existing fossil energy infrastructure-such as abandoned oil wells-for renewable geothermal applications.Overall,the findings of this study underscore the potential of sedimentary formations for EGS development and contribute to advancing low-carbon,diversified energy solutions in alignment with national decarbonization goals.展开更多
Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overa...Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites.展开更多
This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable en...This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable energy,limited research has addressed the potential of ground-source heat pump(GSHP)systems under local climatic and soil conditions.To address this gap,the study employs GeoT*SOL simulation to evaluate systemperformance,incorporating site-specific parameters such as soil thermal conductivity,heating demand profiles,and regional weather data.The results show that the GSHP system achieves a maximum seasonal performance factor(SPF)of 5.62 and an average SPF of 4.86,indicating high operational efficiency.Additionally,the system provides an estimated annual CO_(2) emissions reduction of 1956 kg per household,highlighting its environmental benefits.Comparative analysis with conventional heating systems demonstrates considerable energy savings and emissions mitigation.The study identifies technical(e.g.,initial installation complexity)and economic(e.g.,high upfront costs)challenges to widespread implementation.Based on these insights,practical recommendations are proposed:policymakers are encouraged to support financial incentives and policy frameworks;urban planners should consider GSHP integration in regional heating plans;and engineers may adopt the simulation-based approach presented here for feasibility studies.This research contributes to the strategic advancement of renewable heating technologies in Azerbaijan.展开更多
Taking the Qihe area as an example,this paper compared various geophysical exploration methods in view of the problems of urban construction,deep thermal reservoir burial,and vast overlying low-resistance shield layer...Taking the Qihe area as an example,this paper compared various geophysical exploration methods in view of the problems of urban construction,deep thermal reservoir burial,and vast overlying low-resistance shield layer in deep karst geothermal exploration.A Controlledsource audio magnetotelluric(CSAMT)method was taken to overcome the problems and detect deep stratigraphic structures in the study area.The acquisition parameters of CSAMT were optimized to take into account the exploration depth and signal-to-noise ratio.The distortion of data in the near and transition zone was eliminated by the inversion of equivalent whole-region apparent resistivity,so as to achieve the purpose of deep sounding.Based on the resistivity profile resulting from the proposed CSAMT method,three faults were inferred and one low-resistance anomaly zone in the area was traced.The results of the profile interpretation were verified by drilling.The inferred stratigraphic boundaries and low-resistance anomaly zone were basically in agreement with the drilling results,thereby proving the eff ectiveness of the CSAMT method for deep geothermal exploration in low-resistance coverage areas.This method could provide technical support for deep geothermal exploration in similar areas.展开更多
基金funded by the Study on enhanced heat transfer mechanism of low-permeability carbonate rocks under in-situ conditions under Grant number YK202305the National Natural Science Foundation of China under Grant number 42272350the Geothermal Survey Project of the China Geological Survey under Grant number DD20221676.
文摘Xiong'an New Area boasts abundant geothermal resources,with widespread Jixianian geother-mal reservoirs serving as key targets for exploration and development.Zoning geothermal resources helps characterize their distribution and attributes,offering critical guidance for their sustainable exploitation and utilization.This study integrates data from drilling and production tests across 21 geothermal wells to analyze the Jixianian strata,including depth,thickness,temperature,single-well water yield,Groundwater Level Depth(GWD),and Total Dissolved Solids(TDS).Employing fuzzy mathematics,a zoning analysis was performed,yielding quantitative evaluation scores and delineating favorable zones for development.Key findings include:(1)Geothermal reservoirs in the Rongcheng and Niutuozhen uplifts exhibit shallow burial depths,substantial thicknesses,high productivity,and relatively low temperatures,making them highly suitable for large-scale geothermal exploitation;(2)Zones with high resource potential but uncertain conditions require further exploration to mitigate development risks;(3)Areas near the Rongcheng fault or Jixianian strata buried deeper than 4,000 m are recommended for deferred exploitation;(4)Comprehensive evaluation reveals that the Jixianian carbonate geothermal reservoirs in Xiong'an New Area manifest 168 geothermal resources of 5,370.31×10 J,geothermal fluid reserves of 101.17×10 m3,and recoverable fluid 4 reserves of 93.41×10 m3/d under balanced extraction and reinjection.Recoverable geothermal heat 164 amounts to 9.36×10 J/a,equivalent to 319.4×10 t/a of standard coal.This study provides valuable insights into the exploration and sustainable exploitation of deep geothermal reservoirs in Xiong'an New Area,enhancing resource utilization and contributing to the development of a green and sustainable Xiong'an New Area.
基金support from the foundation"Research on Key Technologies for Multi-source Energy Integration and Full-scenario Utilization of Zero-carbon Expressways under the Dual-Carbon Strategy"(NO.JS2024B004).
文摘Under the national"Dual Carbon"strategy,the development and utilization of stable and efficient renewable energy has become pivotal for energy structure transformation.Shandong Province hosts abundant geothermal resources with significant potential for large-scale exploitation.This paper systematically reviews the technological framework and application prospects of geothermal energy development in Shandong.First,the geological model of the geothermal system,centered on the"source-reservoir-caprock-conduit"framework,is elucidated.The characteristics of major thermal reservoirs,including the Neogene Guantao Formation,Paleogene Dongying Formation,and Cambrian-Ordovician strata,are analyzed in the context of Shandong’s geologic setting.Subsequently,advanced geophysical exploration methodologies—such as Magnetotelluric(MT),Controlled-Source Audio-Frequency Magnetotellurics(CSAMT),and Wide-Field Electromagnetic Method(WFEM)—are highlighted for their critical roles in precisely delineating thermal reservoirs and identifying heat-controlling structures,significantly improving exploration efficiency.In terms of utilization,this study examines diversified application models guided by the"cascade utilization"principle,emphasizing high-efficiency geothermal heating technologies(e.g.,geothermal heat pump systems)and power generation technologies(dry steam,fl ash steam,and binary cycle systems)tailored to resources of varying temperatures.The review demonstrates that technological innovations and mature application frameworks are driving the geothermal industry in Shandong toward high-quality development,providing robust support for regional energy security and low-carbon transition.
基金Supported by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Geothermal Technologies Office(GTO)“Innovative Methods to Control Hydraulic Properties of Enhanced Geothermal Systems”(DE-EE0009790).
文摘To understand the applicability of high-temperature preformed particle gel(HT-PPG)for control of short-circuiting in enhanced geothermal systems(EGSs),core flooding experiments were conducted on fractured granite cores under varying fracture widths,gel particle sizes and swelling ratios.Key parameters such as injection pressure,water breakthrough pressure,and residual resistance factor were measured to evaluate HT-PPG performance.The gel exhibited strong injectability,entering granite fractures at pressure gradients as low as 0.656 MPa/m;HT-PPG yields a superior sealing performance by significantly reducing the permeability;and dehydration occurs during HT-PPG propagation,with a dehydration ratio ranging from 4.71%to 11.36%.This study reveals that HT-PPG can be injected into geothermal formations with minimal pressure yet provides strong resistance to breakthrough once in place.This balance of injectability and sealing strength makes HT-PPG effective for addressing thermal short-circuiting in EGS reservoirs.
基金funded by the National Key Research and Development Program(Grant Nos.2021YFB1507404 and 2018YFC0604305)the Project of China Geological Survey(Grant Nos.DD20221680,DD20189113,and DD20190127).
文摘The karst geothermal reservoir in Xiong'an New Area is a representative example of an ancient buried hill geothermal system.However,published heat flow data are predominantly derived from the Cenozoic sedimentary cap.Due to the limited depth of borehole exploration,heat flow measurements and analyses of the Archean crystalline base-ment in the study area are rare.Further investigation of the heat flow and temperature field characteristics within the Archean crystalline basement beneath the karst geothermal reservoir is necessary to understand the vertical distribution of heat flow and improve the geothermal genetic mechanism in the area.The D01 deep geothermal scientific drilling param-eter well was implemented in the Niutuozhen geothermal field of Xiong'an New Area.The well exposed the entire Gaoyuzhaung Formation karst geotheremal reservoir of the Jixian system and drilled 1,723.67 m into the Archean crys-talline basement,providing the necessary conditions for determining its heat flow.This study involved borehole tempera-ture measurements and thermophysical property testing of core samples from the D01 well to analyze the vertical distri-bution of heat flow.The findings revealed distinct segmentation in the geothermal gradient and rock thermophysical prop-erties.The geothermal reservoir of Gaoyuzhuang Formation is dominated by convection,with significant temperature inversions corresponding to karst fracture developments.In contrast,the Archean crystalline basement exhibits conduc-tive heat transfer.After 233 days of static equilibrium,the average geothermal gradients of the Gaoyuzhuang Formation and the Archean crystalline basement were determined to be 1.5°C/km and 18.3°C/km,respectively.These values adjusted to-0.8°C/km and 18.2°C/km after 551 days,with the longer static time curve approaching steady-state condi-tions.The average thermal conductivity of dolomite in Gaoyuzhuang Formation was measured as 4.37±0.82 W/(K·m),3 and that of Archean gneiss as 2.41±0.40 W/(K·m).The average radioactive heat generation rate were 0.30±0.32μW/m 3 for dolomite and 1.32±0.69μW/m for gneiss.Using the temperature curve after 551 days and thermal conductivity data,the Archean heat flow at the D01 well was calculated as(43.9±7.0)mW/m2,While the heat flow for the Neogene sedi-mentary cap was estimated at 88.6mW/m2.The heat flow of Neogene sedimentary caprock is significantly higher than 2 that of Archean crystalline basement at the D01 well,with an excess of 44.7 mW/m accounting for approximately 50%of the total heat flow in the Neogene sedimentary caprock.This is primarily attributed to lateral thermal convection within the high-porosity and high-permeability karst dolomite layer,and vertical thermal convection facilitated by the Niudong fault,which collectively contribute to the heat supply of the Neogene sedimentary caprock.Thermal convection in karst fissure and fault zone contribute approximately 50%of the heat flow in the Neogene sedimentary caprock.This study quantitatively revealed the vertical distribution of heat flow,providing empirical evidence for the genetic mechanism of the convection-conduction geothermal system in sedimentary basins.
文摘Geothermal exploration and development in North Africa have advanced significantly,driven by the region's rich geothermal resources and rising energy demand.The countries of Mauritania,Morocco,Algeria,Tunisia,Libya,and Egypt are located near tectonic plate boundaries(African and Eurasian plates),giving them substantial geothermal potential.Various exploration activities,including geological surveys and geophysical studies,have been conducted to assess geothermal reservoirs and identify suitable development sites.This article reviews the progress made in geothermal exploration across the region,highlighting the key activities undertaken to evaluate geothermal resources.It also explores how government policies have played a critical role either in fostering or in freezing geothermal development.The different conducted assessments such as analyzing geological structures,hydrothermal systems,and subsurface temperatures lead to identify suitable sites for geothermal development and improve the understanding of subsurface conditions and ongoing projects.Today,some countries in North Africa are positioning themselves to become important players in the global geothermal energy landscape,and with continued investment and concerted efforts,the region has the potential to emerge as a prominent player in the global geothermal energy landscape.
文摘The development of machine learning and deep learning algorithms as well as the improvement ofhardware arithmetic power provide a rare opportunity for logging big data private cloud.With the deepeningof exploration and development and the requirements of low-carbon development,the focus of exploration anddevelopment in the oil and gas industry is gradually shifting to the exploration and development of renewableenergy sources such as deep sea,deep earth and geothermal energy.The traditional petrophysical evaluation andinterpretation model has encountered great challenges in the face of new evaluation objects.To establish a distributedlogging big data private cloud platform with a unified learning model as the key,which realizes the distributed storageand processing of logging big data,and enables the learning of brand-new knowledge patterns from multi-attributedata in the large function space in the unified logging learning model integrating the expert knowledge and the datamodel,so as to solve the problem of geoengineering evaluation of geothermal fields.Based on the research ideaof“logging big data cloud platform---unified logging learning model---large function space---knowledge learning&discovery---application”,the theoretical foundation of unified learning model,cloud platform architecture,datastorage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storageand processing of data and learning algorithms.New knowledge of geothermal evaluation is found in a large functionspace and applied to Geo-engineering evaluation of geothermal fields.The examples show its good application in theselection of logging series in geothermal fields,quality control of logging data,identification of complex lithologyin geothermal fields,evaluation of reservoir fluids,checking of associated helium,evaluation of cementing quality,evaluation of well-side fractures,and evaluation of geothermal water recharge under the remote logging module ofthe cloud platform.The first and second cementing surfaces of cemented wells in geothermal fields were evaluated,as well as the development of well-side distal fractures,fracture extension orientation.According to the well-sidefracture communication to form a good fluid pathway and large flow rate and long flow diameter of the thermalstorage fi ssure system,the design is conducive to the design of the recharge program of geothermal water.
基金supported by the National Natural Science Foundation of China(Nos.U23B2091,52304104,and 52404157)the National Key R&D Program of China(No.2022YFC2905600)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZB20240825).
文摘Developing hydrothermal resources in highly conductive karst aquifers at deep mine floors is regarded as a potential approach to achieving the co-development of coal and geothermal resources.However,the heat transfer potential of the fracture system in the target reservoir under mining activities remains in suspense.Hence,a coupled thermal-hydraulic-mechanical model was developed for the karst reservoir of Anju coal mine in China,considering non-isothermal convective heat transfer in fractures.This model examined the influence of stress redistribution due to different mining distances(MD)on the effective flow channel length/density and the high/low-aperture fracture distribution.The dynamic heat generation characteristics of the geothermal reservoir were evaluated.Key findings include:Mining-induced stress creates interlaced high-aperture and low-aperture fracture zones below the goaf.Within these interlaced zones,the combined effect of high-and low-aperture fractures restricts the effective flow channel length/density of the fracture network.This contraction of the flow field leads to a significant decline in production flow rate,which consequently reduces both the production flow rate and power as MD increases.This work represents the study of mining disturbances on geothermal production,providing a theoretical foundation for the co-development of coal and geothermal resources.
基金funded by the Fundamental Research Funds for the Central Universities(No.XJ2025001701)。
文摘As mining depth increases,the temperature of the surrounding rock rises,drawing global attention to the potential for geothermal energy extraction from high-temperature water stored in collapsed rock masses-a prospect that offers both promise and challenges.In response,this study proposes a functional backfilling method using mining solid waste to construct a high-porosity heat extraction space.The research integrates experiments,theoretical analysis,and simulations to examine the mechanical and permeability properties of solid waste backfill materials.It further aims to elucidate how flow velocity and initial temperature influence the evolution of the temperature field and the thermal performance.Results indicate that the backfill material achieves optimal mechanical strength with a glass fiber content of 10‰ and a length of 6 mm.Furthermore,the permeability of the solid waste backfill demonstrates a quadratic relationship with both axial and confining pressure.During the recovery stage,the temperature in the heat extraction space remains lower than that of the surrounding rock,with geothermal energy being extracted via convective heat transfer between the water medium and the rock.The amount of heat extracted shows a positive correlation with the flow velocity of the water medium and a negative correlation with its initial temperature.
基金support received from the National Major Special Project titled“Exploration and Evaluation of Deep Geothermal Energy in Key Regions”(Project No.2024ZD1003600)the Science and Technology Department of Sinopec(Project No.JP24071).
文摘The Beijing-Tianjin-Hebei Plain is among the regions in China that feature the largest scale and the fastest growth in medium and deep geothermal heating.Based on tests of 82 geothermal fluid samples from 7 geothermal fields in Hebei Province,2 geothermal fields in Henan Province,and 2 geothermal fields in Shandong Province,and combined with previous studies on the chemical characteristics of karst geothermal water in Beijing and Tianjin,this paper systematically analyzes the migration characteristics of geothermal fluids in karst geothermal reservoirs within the Beijing-Tianjin-Hebei Plain.The hydrochemical characteristics of karst geothermal water in the research areas exhibit certain differences.The geothermal water in Hebei is more mature than that in its neighboring provinces.The distribution of total dissolved solids(TDS)and strontium elements in the area is characterized by being low in the north and south and high in the middle,suggesting that the overall flow direction of geothermal fluid is from the north and south towards the middle.Combined with the groundwater flow field and the changing trend of the hydrochemical characteristics of geothermal wells along the geological section,a geothermal water migration model has been established.The geothermal fluids originating from Taihang Mountain,Yanshan Mountain,and Western Shandong Mountain enter the basin and continue to migrate towards the central part of the basin along water-conducting faults.However,the migration characteristics of geothermal fluids with the same supply direction are not identical.The geothermal fluids from Taihang Mountain are cut off by the Niudong Fault in the north and terminate in the central uplift belt of the Jizhong Depression,while in the south,they enter the east of the Jizhong Depression relatively quickly along the Hengshui Conversion Belt.The geothermal fluids from Yanshan Mountain migrate into the basin along the Cangdong Fault,yet this fault also disrupts the hydraulic connection between the tectonic units.Considering the effective dynamic conditions,it is recommended to further expand the scale of the scientific development and utilization of geothermal energy in the geothermal water catchment areas around Xiongxian County and southwest Cangzhou City.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
基金supported by the Key Project of the National Natural Science Foundation of China(U23B2091)the National Key R&D Program of China(2022YFC2905600)+1 种基金the Youth Project of the National Natural Science Foundation of China(52304104 and 52404157)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(GZB20240825).
文摘As the mine depth around the world increases,the temperature of the surrounding rock of the mining workface increases significantly.To control the heat hazards,the hot water in the mining floor is developed during mining to decrease the min-ing workface temperature while also developing geothermal energy.This method is called the co-exploitation of mine and geothermal energy(CMGE).The geothermal development may precipitate the large-scale failure of the nearby fault zone during the mining process.However,the evolution of shear slide and shear failure of fault under geothermal production/rein-jection during mining is missing.Therefore,a fully-coupled hydraulic mechanism(HM)double-medium model for CMGE was developed based on the measured data of the Chensilou mine.A comparative analysis of the mechanical response of fault between CMGE and single mining was conducted.The disturbance of geothermal production pressure and reinjection pressure under mining on fault stability were respectively expounded.The results indicate that:(1)The disturbance of geo-thermal reinjection amplifies the disturbance of mining on fault stability.The amplified effect resulted in a normal stress drop of the fault,further leading to a substantial increase in shear slide distance,failure area,and cumulative seismic moment of fault compared with the single mining process.(2)As the distance of reinjection well to the fault decreases,the fault failure intensity increases.Setting the production well within the fault is advantageous for controlling fault stability under CMGE.(3)The essence of the combined disturbance of CMGE on the nearby fault is the overlay of tensile stress disturbance on the fault rock mass of the mining and geothermal reinjection.Though the geothermal reinjection causes a minor normal stress drop of fault,it can result in a more serious fault failure under CMGE.This paper supplies a significant gap in understanding thenearby faults failure under CMGE.
基金funded by the Key R&D Program of Henan,China(No.241111321000)China Geological Survey Program(DD20221676).
文摘Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.
基金supported by the Geological Exploration Leading Demonstration and Science and Technology Research Project of Shandong Provincial Bureau of Geology and Mineral Resources Exploration and Development in 2022(No.KY202203).
文摘This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms and influencing factors.The findings indicate that the overall abundance of ^(222)Rn in geothermal fluids across the region is relatively low.Geothermal radon mineral water is primarily located within banded thermal reservoirs associated with bedrock fracture structures in the Ludong and Luxi uplift geothermal zones.The study reveals that the ionic composition,radioactivity intensity,and extent of water-rock interactions exert only effects in the concentration of ^(222)Rn in geothermal fluids.The formation of geothermal radon mineral water is predominantly governed by“fracture-controlled”mechanisms,with thermal reservoir lithology,fracture tectonics,and seismic activity serving as key determinants.Additionally,the enrichment of ^(222)Rn in geothermal fluids is influenced by factors such as geothermal fluid temperature,depth of occurrence,cap rock thickness,and alteration processes.The genetic mechanisms of geothermal radon mineral water can be categorized into two types:„native‟and„composite‟.These findings provide critical insights into the exploration and development of geothermal radon mineral water resources in Shandong and similar regions.
基金funded by the National Natural Science Foundation of China(Grant Nos.42107163 and 42320104003)support from the G.Albert Shoemaker endowment.
文摘Hydraulic fracturing then fluid circulation in enhanced geothermal system(EGS)reservoirs have been shown to induce seismicity remote from the stimulation-potentially generated by the distal projection of thermoporoelastic stresses.We explore this phenomenon by evaluating stress perturbations resulting from stimulation of a single stage of hydraulic fracturing that is followed by thermal depletion of a prismatic zone adjacent to the hydraulic fracture.We use Coulomb failure stress to assess the effect of resulting stress perturbations on instability on adjacent critically-stressed faults.Results show that hydraulic fracturing in a single stage is capable of creating stress perturbations at distances to 1000 m that reach 10^(-5)-10^(-4)MPa.At a closer distance,the magnitude of stress perturbations increases even further.The stress perturbation induced by temperature depletion could also reach 10^(-3)-10^(-2)MPa within 1000 m-much higher than that by hydraulic fracturing.Considering that a critical change in Coulomb failure stress for fault instability is 10^(-2)MPa,a single stage of hydraulic fracturing and thermal drawdown are capable of reactivating critically-stressed faults at distances within 200 m and 1000 m,respectively.These results have important implications for understanding the distribution and magnitudes of stress perturbations driven by thermoporoelastic effects and the associated seismicity during the simulation and early production of EGS reservoirs.
文摘Renewable energy resources,including geothermal,are crucial for sustainable environmental management and climate change mitigation,offering clean,reliable,and low-emission alternatives to fossil fuels that reduce greenhouse gases and support ecological balance.In this study,geographic information system(GIS)predictive analysis was employed to explore geothermal prospects,promoting environmental sustainability by reducing the dependence on fossil energy resources.Spatial and statistical analysis including the attribute correlation analysis was used to evaluate the relationship between exploration data and geothermal energy resources represented by hot springs.The weighted sum model was then used to develop geothermal predictive maps while the accuracy of prediction was determined using the receiver operating characteristic/area under curve(ROC/AUC)analysis.Based on the attribute correlation analysis,exploration data relating to geological structures,host rock(Asu River Group)and sedimentary contacts were the most critical parameters for mapping geothermal resources.These parameters were characterized by a statistical association of 0.52,0.48,and 0.46 with the known geothermal occurrences.Spatial data integration reveals the central part of the study location as the most prospective zone for geothermal occurrences.This zone occupies 14.76%of the study location.Accuracy assessment using the ROC/AUC analysis suggests an efficiency of 81.5%for the weight sum model.GIS-based multi-criteria analysis improves the identification and evaluation of geothermal resources,leading to better decision-making.
基金the National Key Research and Development Program of China(No.2020YFA0711800)the Natural Science Foundation of Jiangsu Province(No.BK20251631)+1 种基金the Fundamental Research Funds for the Central Universities(No.2025QN1019)Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20250449)。
文摘The safe and efficient development of geothermal energy is a key driver of the energy revolution and environmental governance in this century.To understand the effect of water driving pressure on drilling safety and hydraulic fracturing efficiency during the development of geothermal energy under varying reservoir temperatures,dynamic compression tests were conducted on granite samples subjected to thermal treatment(25,100,200,300,400 and 600℃)and subsequent forced water absorption(0,4,8,12 MPa)using a split Hopkinson pressure bar system.The results indicate that a higher water driving pressure exacerbates the deterioration of dynamic compressive strength with increasing temperature,while it enhances the rate dependence of dynamic compressive strength,except at 600℃.The dynamic increase factor(DIF)of dynamic compressive strength vs.strain rate is determined by both temperature and water driving pressure.A prediction model for the deterioration of dynamic compressive strength considering reservoir temperature and water driving pressure is proposed for geothermal reservoirs.While the splitting failure of samples remains unchanged,crack density increases with increasing temperature and water driving pressure,exhibiting multiscale failure cracks parallel to the loading direction.The structure effective strength model,the wing-crack propagation model,the effect of pore water pressure on dynamic stress intensity factor,and the dynamic response of forced absorbed water can collectively reveal the response mechanisms of dynamic strength.Based on the experimental findings,implications for safe and productive geothermal energy development are discussed,with particular attention to the effect of drilling fluid leakage on wellbore stability and the impact of residual fracturing fluid after backflow on repeated fracturing.This study has important reference value for understanding dynamic wellbore stability under drilling disturbance loads and for the design of repeated dynamic hydraulic fracturing schemes in geothermal energy development.
文摘An enhanced geothermal system(EGS)represents a promising approach to sustainable energy generation by harnessing subsurface heat from deep geological formations with low natural permeability.Sedimentary basins-such as the Williston Basin in North Dakota-are considered viable candidates for EGS development due to their broad geographic extent and moderate geothermal potential.Notably,depleted or non-productive oil wells within these basins offer a cost-effective opportunity for EGS implementation as they can be repurposed,thereby significantly reducing the need for new drilling.This study evaluates the feasibility of EGS deployment in McKenzie County,North Dakota.Core samples from five partially abandoned or dry oil wells associated with production from the Red River Formation were obtained from the Core Library of the North Dakota Geological Survey.These samples,spanning the entire thickness of the formation,were sectioned and polished at defined depth intervals for detailed analyses and precise measurements of key reservoir properties critical to geothermal assessment.Several parameters were analyzed to assess the geothermal viability of these wells,including formation temperature,temperature gradient,porosity,thermal conductivity,energy storage potential,and estimated power output via the Organic Rankine Cycle(ORC).The results demonstrate significant depth-dependent variations in thermal and petrophysical properties.Specifically,the depth range of 4000-4500 m is identified as a promising target for EGS stimulation since it is characterized by elevated temperatures,high thermal conductivity,favorable temperature gradients,and sufficient porosity-all essential properties for enhancing permeability through hydraulic fracturing.Furthermore,the calculated energy content and potential ORC power output at these depths indicate that effective geothermal energy extraction is technically feasible.This suggests a compelling opportunity to repurpose existing fossil energy infrastructure-such as abandoned oil wells-for renewable geothermal applications.Overall,the findings of this study underscore the potential of sedimentary formations for EGS development and contribute to advancing low-carbon,diversified energy solutions in alignment with national decarbonization goals.
基金support from the National Natural Science Foundation of China(Grant Nos.42320104003,42177175,and 42077247)the Fundamental Research Funds for the Central Universities.
文摘Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites.
文摘This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable energy,limited research has addressed the potential of ground-source heat pump(GSHP)systems under local climatic and soil conditions.To address this gap,the study employs GeoT*SOL simulation to evaluate systemperformance,incorporating site-specific parameters such as soil thermal conductivity,heating demand profiles,and regional weather data.The results show that the GSHP system achieves a maximum seasonal performance factor(SPF)of 5.62 and an average SPF of 4.86,indicating high operational efficiency.Additionally,the system provides an estimated annual CO_(2) emissions reduction of 1956 kg per household,highlighting its environmental benefits.Comparative analysis with conventional heating systems demonstrates considerable energy savings and emissions mitigation.The study identifies technical(e.g.,initial installation complexity)and economic(e.g.,high upfront costs)challenges to widespread implementation.Based on these insights,practical recommendations are proposed:policymakers are encouraged to support financial incentives and policy frameworks;urban planners should consider GSHP integration in regional heating plans;and engineers may adopt the simulation-based approach presented here for feasibility studies.This research contributes to the strategic advancement of renewable heating technologies in Azerbaijan.
基金National Natural Science Foundation of China(No 52174048).
文摘Taking the Qihe area as an example,this paper compared various geophysical exploration methods in view of the problems of urban construction,deep thermal reservoir burial,and vast overlying low-resistance shield layer in deep karst geothermal exploration.A Controlledsource audio magnetotelluric(CSAMT)method was taken to overcome the problems and detect deep stratigraphic structures in the study area.The acquisition parameters of CSAMT were optimized to take into account the exploration depth and signal-to-noise ratio.The distortion of data in the near and transition zone was eliminated by the inversion of equivalent whole-region apparent resistivity,so as to achieve the purpose of deep sounding.Based on the resistivity profile resulting from the proposed CSAMT method,three faults were inferred and one low-resistance anomaly zone in the area was traced.The results of the profile interpretation were verified by drilling.The inferred stratigraphic boundaries and low-resistance anomaly zone were basically in agreement with the drilling results,thereby proving the eff ectiveness of the CSAMT method for deep geothermal exploration in low-resistance coverage areas.This method could provide technical support for deep geothermal exploration in similar areas.