The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study del...The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.展开更多
Temperature rise caused by windage power is a major limitation to the large-scale process of geotechnical centrifuges.However,there is no consensus on how to identify the key parts(parts with high windage power consum...Temperature rise caused by windage power is a major limitation to the large-scale process of geotechnical centrifuges.However,there is no consensus on how to identify the key parts(parts with high windage power consumption)and parameters(the velocity coefficientαand windage coefficient C_(i)),and the influence of idle power is often neglected in methods for calculating windage power.To address these issues,a Centrifugal Hypergravity and Interdisciplinary Experiment Facility(CHIEF)scaled model device was constructed,and the windage power was measured.Then,a computational fluid dynamics(CFD)model of the device was established and validated by experimental results.Simulation results were analyzed to quantify the proportion of the windage power in different parts of the device and summarize the variation law of key parameters.Finally,a novel windage power calculation equation was developed based on the elimination of the influence of the idle power.Results show that the role of the rotating arm cannot be ignored in the selection of key parts.The velocity coefficient and windage coefficient are a function of the device geometry and size,and are independent of the angular velocity.The windage power is proportional to the cube of the angular velocity after eliminating the effect of idle power.展开更多
Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in Sã...Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.展开更多
This study aims to characterize from a geotechnical point of view, the soils as well as the lateritic gravels along the Songololo-Lufu road route in the Kongo Central Province in the Democratic Republic of Congo (DRC)...This study aims to characterize from a geotechnical point of view, the soils as well as the lateritic gravels along the Songololo-Lufu road route in the Kongo Central Province in the Democratic Republic of Congo (DRC). Ten soil samples and eight lateritic gravel samples were analysed and tested in the laboratory. For each sample, identification parameters were determined such as particle size analysis, natural water content, Atterberg limits (plasticity index and consistency index), but also compaction and lift parameters such as optimal water content, maximum dry density and CBR lift index. All materials and soils have been classified according to the Congolese Road Standard (NRC) and according to the American HRB classification. The test results show us that clay soils almost always contain between 70% and 90% fine fraction;the grained fraction represents less than 30% in clay samples. For lateritic gravels soils, the percentage of fine elements varies between 35% and 15%;in sand around 20%;the gravelly fraction represents a little more than 50% of the soil. The majority of soil facies encountered define a plasticity index lower than 15. As for the consistency index, we obtained values greater than 1, both for clayey soils and for gravelly soils. The classification according to NRC defined for these soils the types Ae1 and Ae2 for the clayey facies and the types GL1 and GL2 for the gravelly soils, while that of the HRB identified the classes and subclasses A-6 and A-7-6 for clayey soils, and subclass A-2-6 for gravelly soils. The optimal water content values obtained range between 10.2% and 23.10%;the maximum dry densities are between 1.66 and 2.07 t/m<sup>3</sup> and the CBR index is between 6 and 26. As for the lateritic gravels materials of the Songololo region, the percentage of fine elements generally remains between 12% and 31%;the plasticity index is between 8 and 18;the optimal dry density is around 2 t/m<sup>3</sup>;the optimal water content is between 9.8% and 14.5% and the CBR index is between 27 and 82. The Songololo-Lufu lateritic gravels are characteristic of laterites in the savannah region, with a high gravel fraction at the expense of the fine fraction, but low parameters such as the liquid limit and plasticity index.展开更多
Geotechnical studies are essential in civil engineering for all building and infrastructure projects. Typically, in-situ studies involving soil sample collection through drilling are conducted. However, these invasive...Geotechnical studies are essential in civil engineering for all building and infrastructure projects. Typically, in-situ studies involving soil sample collection through drilling are conducted. However, these invasive methods can be costly when numerous boreholes are needed to assess stratum continuity or are impractical for examining subsurface conditions beneath existing structures. Shallow geophysical exploration offers several non-invasive alternatives for subsurface characterization, with Electrical Resistivity Tomography (ERT) being particularly versatile. ERT provides detailed and accurate subsurface images through a relatively simple and fast field implementation. For this study, four 2D ERT profiles were designed and performed near three buildings at the Centro Universitario de la Costa in Puerto Vallarta, Jalisco, Mexico, using a Gito-1100 V resistivity meter from Hematec with Dipole-Dipole arrays. Basic descriptive statistics were calculated for each data set to establish criteria for outlier removal, optimizing the inversion process in Res2DInv software. The inversion results defined five geoelectric units [UG-1 (1 to 20 Ω‧m), UG-2 (20 to 40 Ω‧m), UG-3 (40 to 100 Ω‧m), UG-4 (100 to 500 Ω‧m), and UG-5 (750 to 1000 Ω‧m)], consistent with previously identified geologic materials. The 2D ERT profiles allowed for the identification of lateral variations in moisture content and saturation and determined the depth of consolidated and possibly cemented materials suitable for future infrastructure projects on the university campus. This work provides a reference framework for implementing the 2D-ERT technique in Puerto Vallarta, supporting its use as a non-invasive alternative for effective subsurface characterization in geotechnical and civil engineering contexts.展开更多
<div style="text-align:justify;"> In most cases, copper ore deposits occur at great depths, so the optimization of excavation costs is of utmost importance to identify the most cost effective and produ...<div style="text-align:justify;"> In most cases, copper ore deposits occur at great depths, so the optimization of excavation costs is of utmost importance to identify the most cost effective and productive mining methods, such as block caving or similar methods specifically developed for these deposits. To be able to apply such methods, it is necessary to have a detailed knowledge of the rock mass in terms of its geomechanical, engineering geological and hydrogeological characteristics. This research aims to reduce geological and geotechnical unknowns, analyze in detail the geological environment, and predict geotechnical conditions for the construction of the shaft. This paper uses the example of Borska Reka Copper Deposit, located in Serbia to illustrate the importance of geotechnical investigation to enable best practice in design and construction of shafts that are over 1000 m deep. </div>展开更多
Geotechnical monitoring currently plays a key role in the research of the processes taking place in the ground medium and preventing hazardous events.In the case of open-pit mining,several solutions are commonly used ...Geotechnical monitoring currently plays a key role in the research of the processes taking place in the ground medium and preventing hazardous events.In the case of open-pit mining,several solutions are commonly used to monitor various geotechnical parameters.However,geotechnical situation is usually assessed based on recorded values of deep and surface displacement,which allow to accurately predict landslides.The measurements are most often carried out manually,which,due to the difficult terrain conditions in the case of open-pit mining,are often timeconsuming and complicated,especially taking into account dangerous landslide movements.Therefore,in order to ensure a higher degree of safety against the risk of landslides,modern solutions are required in the field of geotechnical monitoring.This article presents modern automatic measurement techniques,compares various solutions available on the market and illustrates the benefits of their application in open-pit mining.It also discusses the expansion and modernization of the control and measurement network at KWB Turów,carried out in recent years,as well as the observational method for controlling the efficiency of stackers,developed after the installation of automated measuring stations,with its impact on the geotechnical safety of an internal waste heap.The paper as a case study presents,what a modern and effective geotechnical monitoring system should look like,which in practice will ensure continuous observation of selected parameters and enable a quick response in the event of a landslide threat.Last but not least,the author focuses on the creation of an innovative landslide early warning system,implemented at KWB Turów.展开更多
Geotechnical engineering technology is a new type of technology in civil engineering construction, which plays an important role in promoting the geotechnical investigation. But in this process, the staff should corre...Geotechnical engineering technology is a new type of technology in civil engineering construction, which plays an important role in promoting the geotechnical investigation. But in this process, the staff should correctly grasp the geotechnical investigation work, correctly investigate geotechnical engineering and correctly guide the investigation site. At the same time, attention should be paid to the collection of relevant geotechnical data, which has an important role in promoting both geotechnical engineering design and geotechnical engineering construction. However, the status quo of geotechnical investigation in geotechnical engineering technology can be known that there are still problems such as unprofessional survey personnel, non-standard operation and unvalued sustainability and maintenance of equipment, which are not conducive to the development of geotechnical engineering technology. In this context, it is necessary to focus on the development of geotechnical investigation in geotechnical engineering technology.展开更多
Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the ...Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the design stage can be clarified. Targeted hydrogeological survey can effectively improve the safety of geotechnical construction and the reliability of construction operation. This paper deeply and effectively analyzes and explores the hydrogeological survey work in order to provide a reference for the smooth and effective development of geotechnical engineering.展开更多
Geotechnical engineering is an important foundation engineering in construction engineering. The quality of geotechnical engineering has a great impact on the whole construction engineering, and geotechnical engineeri...Geotechnical engineering is an important foundation engineering in construction engineering. The quality of geotechnical engineering has a great impact on the whole construction engineering, and geotechnical engineering is a complex operation project with high difficulty coefficient. Therefore, the investigation of geotechnical engineering is also very important, and the demand of geotechnical engineering in construction engineering is also very large. To ensure the effectiveness of geotechnical engineering investigation, the technical requirements for this investigation in construction engineering are also very high.展开更多
Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical mo...Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical monitoring system is able to provide adequate warning to underground personnel prior to any unexpected major geotechnical failure. This paper reviews the conventional geotechnical monitoring sensors and the emerging Fibre Optic Sensing(FOS) techniques, pointing out their unique features and major differences. Recent advances in various FOS based monitoring systems, including Brillouin time domain distributed optical sensors and fibre Bragg grating(FBG) sensors, are investigated through a critical review of the laboratory studies and field applications used for underground geotechnical monitoring. Particular emphasis is given to fibre packaging, temperature compensation, installation methods and instrumentation performance in the underground environment. A detailed discussion of the advantages and limitations of each FOS monitoring system is also presented in this paper.展开更多
Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. Thi...Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.展开更多
Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed ...Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.展开更多
Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making cont...Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.展开更多
Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy veg...Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy vegetation. Thus, the steep-sided topography and heavy precipita- tion means floods and landslides are common and in areas with little flat land. Since the mass movements in some parts of city create an enormous danger for buildings, site selection for residen- tial areas becomes increasingly important. This paper describes geotechnical and seismic properties of Tertiary volcanic rock and establishes the link between these units and construction. In this study, refraction tomography and multichannel analysis surface wave methods were applied in order to seek the best construction site in the residential area. The results of the geophysical study were com- pared with the borehole applications. A series of geomechnical tests were carried out on the core samples. Following that, statistical correlations were conducted by regression analysis to evaluate re- lationships between measured parameters. Rock Quality Designation and weathering degree were also determined. The methodology defined in this investigation proves to be an appropriate ap- proach to determine geotechnical properties of the foundation rocks and soils and a proper guide on future geotechnical studies for other cities.展开更多
Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength pr...Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength properties and water-weakening properties were investigated.In situ stress environment and mining-induced fractured damage zone after excavation were studied to reveal the instability mechanism.The results show that red shale contains swelling and loose clayey minerals as interstitial filling material,producing low shear strength of microstructure and making it vulnerable to water.Macroscopically,a U-shaped curve of uniaxial compressive strength(UCS)exists with the increase of the angle between macro weakness plane and the horizon.However,its tensile strength reduced monotonically with this angle.While immersed in water for72h,its UCS reduced by91.9%comparing to the natural state.Field sonic tests reveal that an asymmetrical geometrical profile of fractured damage zone of gateroad was identified due to geological bedding plane and detailed gateroad layout with regards to the direction of major principle stress.Therefore,red shale is a kind of engineering soft rock.For ground control in underground mining or similar applications,water inflow within several hours of excavation must strictly be prevented and energy adsorbing rock bolt is recommended,especially in large deformation part of gateroad.展开更多
For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finit...For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.展开更多
In the design of geotechnical infrastructure,engineers have to deal with naturally occurring soils and rocks which are subjected to spatial variability as well as other uncertainties such as errors in measurement and ...In the design of geotechnical infrastructure,engineers have to deal with naturally occurring soils and rocks which are subjected to spatial variability as well as other uncertainties such as errors in measurement and in modeling methods.Reliability assessment which provides a systematic approach for quantifying the risk of failure has been shown to be a promising tool for solving these challenging geotechnical engineering problems.The method provides a more consistent measure of the level of safety or“structural reliability”through the evaluation of a reliability index and the associated“failure”probability,and is a method that satisfies the need to clearly convey safety issues to the public and regulatory authorities.Various methods for calculating the reliability of geotechnical infrastructures with regard to the assessment of the ultimate and serviceability limit states have been proposed by many researchers and these approaches include:the direct Monte Carlo Simulation,Bayesian and other sampling techniques,the first-order reliability method and the second-order reliability method,the random field method,the response surface method and other surrogate models with the related probabilistic procedures.In this special issue of Geoscience Frontiers,we assemble eleven invited papers which provide insights on the latest developments and challenges in applying probabilistic and reliability methods to geotechnical infrastructure design.展开更多
This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 peo...This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 people and destroyed 33 houses. The landslide involved 2.73 - 106 m3 of CSW and affected an area about 1100 m in length and 630 m in maximum width, making it the largest landfill landslide in the world. The investigation of this disaster used a combination of unmanned aerial vehicle surveillance and multistage remote-sensing images to reveal the increasing volume of waste in the landfill and the shifting shape of the landfill slope for nearly two years before the landslide took place, beginning with the creation of the CSW landfill in March, 2014, that resulted in the uncertain conditions of the landfill's boundaries and the unstable state of the hydrologic performance. As a result, applying conventional stability analysis methods used for natural landslides to this case would be difficult. In order to analyze this disaster, we took a multistage modeling technique to analyze the varied characteristics of the land- fill slope's structure at various stages of CSW dumping and used the non-steady flow theory to explain the groundwater seepage problem. The investigation showed that the landfill could be divided into two units based on the moisture in the land: (1) a front uint, consisted of the landfill slope, which had low water content; and (2) a rear unit, consisted of fresh waste, which had a high water content. This struc- ture caused two effects-surface-water infiltration and consolidation seepage that triggered the landslide in the landfill. Surface-water infiltration induced a gradual increase in pore water pressure head, or piezometric head, in the front slope because the infiltrating position rose as the volume of waste placement increased. Consolidation seepage led to higher excess pore water pressures as the loading of waste increased. We also investigated the post-failure soil dynamics parameters of the landslide deposit using cone penetration, triaxial, and ring-shear tests in order to simulate the characteristics of a flowing slide with a long run-out due to the liquefaction effect. Finally, we conclude the paper with lessons from the tens of catastrophic landslides of municipal solid waste around the world and discuss how to better manage the geotechnical risks of urbanization.展开更多
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin...Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.展开更多
基金funded by the National Key R&D Program Project(No.2022YFC3103604).
文摘The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.
基金supported by the National Major Science and Technology Infrastructure Project of China(No.2017-000052-73-01-002083)the Information Technology Center,Zhejiang University,China.
文摘Temperature rise caused by windage power is a major limitation to the large-scale process of geotechnical centrifuges.However,there is no consensus on how to identify the key parts(parts with high windage power consumption)and parameters(the velocity coefficientαand windage coefficient C_(i)),and the influence of idle power is often neglected in methods for calculating windage power.To address these issues,a Centrifugal Hypergravity and Interdisciplinary Experiment Facility(CHIEF)scaled model device was constructed,and the windage power was measured.Then,a computational fluid dynamics(CFD)model of the device was established and validated by experimental results.Simulation results were analyzed to quantify the proportion of the windage power in different parts of the device and summarize the variation law of key parameters.Finally,a novel windage power calculation equation was developed based on the elimination of the influence of the idle power.Results show that the role of the rotating arm cannot be ignored in the selection of key parts.The velocity coefficient and windage coefficient are a function of the device geometry and size,and are independent of the angular velocity.The windage power is proportional to the cube of the angular velocity after eliminating the effect of idle power.
文摘Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jordão, in São Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jordão, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.
文摘This study aims to characterize from a geotechnical point of view, the soils as well as the lateritic gravels along the Songololo-Lufu road route in the Kongo Central Province in the Democratic Republic of Congo (DRC). Ten soil samples and eight lateritic gravel samples were analysed and tested in the laboratory. For each sample, identification parameters were determined such as particle size analysis, natural water content, Atterberg limits (plasticity index and consistency index), but also compaction and lift parameters such as optimal water content, maximum dry density and CBR lift index. All materials and soils have been classified according to the Congolese Road Standard (NRC) and according to the American HRB classification. The test results show us that clay soils almost always contain between 70% and 90% fine fraction;the grained fraction represents less than 30% in clay samples. For lateritic gravels soils, the percentage of fine elements varies between 35% and 15%;in sand around 20%;the gravelly fraction represents a little more than 50% of the soil. The majority of soil facies encountered define a plasticity index lower than 15. As for the consistency index, we obtained values greater than 1, both for clayey soils and for gravelly soils. The classification according to NRC defined for these soils the types Ae1 and Ae2 for the clayey facies and the types GL1 and GL2 for the gravelly soils, while that of the HRB identified the classes and subclasses A-6 and A-7-6 for clayey soils, and subclass A-2-6 for gravelly soils. The optimal water content values obtained range between 10.2% and 23.10%;the maximum dry densities are between 1.66 and 2.07 t/m<sup>3</sup> and the CBR index is between 6 and 26. As for the lateritic gravels materials of the Songololo region, the percentage of fine elements generally remains between 12% and 31%;the plasticity index is between 8 and 18;the optimal dry density is around 2 t/m<sup>3</sup>;the optimal water content is between 9.8% and 14.5% and the CBR index is between 27 and 82. The Songololo-Lufu lateritic gravels are characteristic of laterites in the savannah region, with a high gravel fraction at the expense of the fine fraction, but low parameters such as the liquid limit and plasticity index.
文摘Geotechnical studies are essential in civil engineering for all building and infrastructure projects. Typically, in-situ studies involving soil sample collection through drilling are conducted. However, these invasive methods can be costly when numerous boreholes are needed to assess stratum continuity or are impractical for examining subsurface conditions beneath existing structures. Shallow geophysical exploration offers several non-invasive alternatives for subsurface characterization, with Electrical Resistivity Tomography (ERT) being particularly versatile. ERT provides detailed and accurate subsurface images through a relatively simple and fast field implementation. For this study, four 2D ERT profiles were designed and performed near three buildings at the Centro Universitario de la Costa in Puerto Vallarta, Jalisco, Mexico, using a Gito-1100 V resistivity meter from Hematec with Dipole-Dipole arrays. Basic descriptive statistics were calculated for each data set to establish criteria for outlier removal, optimizing the inversion process in Res2DInv software. The inversion results defined five geoelectric units [UG-1 (1 to 20 Ω‧m), UG-2 (20 to 40 Ω‧m), UG-3 (40 to 100 Ω‧m), UG-4 (100 to 500 Ω‧m), and UG-5 (750 to 1000 Ω‧m)], consistent with previously identified geologic materials. The 2D ERT profiles allowed for the identification of lateral variations in moisture content and saturation and determined the depth of consolidated and possibly cemented materials suitable for future infrastructure projects on the university campus. This work provides a reference framework for implementing the 2D-ERT technique in Puerto Vallarta, supporting its use as a non-invasive alternative for effective subsurface characterization in geotechnical and civil engineering contexts.
文摘<div style="text-align:justify;"> In most cases, copper ore deposits occur at great depths, so the optimization of excavation costs is of utmost importance to identify the most cost effective and productive mining methods, such as block caving or similar methods specifically developed for these deposits. To be able to apply such methods, it is necessary to have a detailed knowledge of the rock mass in terms of its geomechanical, engineering geological and hydrogeological characteristics. This research aims to reduce geological and geotechnical unknowns, analyze in detail the geological environment, and predict geotechnical conditions for the construction of the shaft. This paper uses the example of Borska Reka Copper Deposit, located in Serbia to illustrate the importance of geotechnical investigation to enable best practice in design and construction of shafts that are over 1000 m deep. </div>
文摘Geotechnical monitoring currently plays a key role in the research of the processes taking place in the ground medium and preventing hazardous events.In the case of open-pit mining,several solutions are commonly used to monitor various geotechnical parameters.However,geotechnical situation is usually assessed based on recorded values of deep and surface displacement,which allow to accurately predict landslides.The measurements are most often carried out manually,which,due to the difficult terrain conditions in the case of open-pit mining,are often timeconsuming and complicated,especially taking into account dangerous landslide movements.Therefore,in order to ensure a higher degree of safety against the risk of landslides,modern solutions are required in the field of geotechnical monitoring.This article presents modern automatic measurement techniques,compares various solutions available on the market and illustrates the benefits of their application in open-pit mining.It also discusses the expansion and modernization of the control and measurement network at KWB Turów,carried out in recent years,as well as the observational method for controlling the efficiency of stackers,developed after the installation of automated measuring stations,with its impact on the geotechnical safety of an internal waste heap.The paper as a case study presents,what a modern and effective geotechnical monitoring system should look like,which in practice will ensure continuous observation of selected parameters and enable a quick response in the event of a landslide threat.Last but not least,the author focuses on the creation of an innovative landslide early warning system,implemented at KWB Turów.
文摘Geotechnical engineering technology is a new type of technology in civil engineering construction, which plays an important role in promoting the geotechnical investigation. But in this process, the staff should correctly grasp the geotechnical investigation work, correctly investigate geotechnical engineering and correctly guide the investigation site. At the same time, attention should be paid to the collection of relevant geotechnical data, which has an important role in promoting both geotechnical engineering design and geotechnical engineering construction. However, the status quo of geotechnical investigation in geotechnical engineering technology can be known that there are still problems such as unprofessional survey personnel, non-standard operation and unvalued sustainability and maintenance of equipment, which are not conducive to the development of geotechnical engineering technology. In this context, it is necessary to focus on the development of geotechnical investigation in geotechnical engineering technology.
文摘Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the design stage can be clarified. Targeted hydrogeological survey can effectively improve the safety of geotechnical construction and the reliability of construction operation. This paper deeply and effectively analyzes and explores the hydrogeological survey work in order to provide a reference for the smooth and effective development of geotechnical engineering.
文摘Geotechnical engineering is an important foundation engineering in construction engineering. The quality of geotechnical engineering has a great impact on the whole construction engineering, and geotechnical engineering is a complex operation project with high difficulty coefficient. Therefore, the investigation of geotechnical engineering is also very important, and the demand of geotechnical engineering in construction engineering is also very large. To ensure the effectiveness of geotechnical engineering investigation, the technical requirements for this investigation in construction engineering are also very high.
文摘Geotechnical stability is a major concern for the long-term safety and integrity of underground infrastructures such as tunnels, railway stations, mine shafts and hydraulic power chambers. An effective geotechnical monitoring system is able to provide adequate warning to underground personnel prior to any unexpected major geotechnical failure. This paper reviews the conventional geotechnical monitoring sensors and the emerging Fibre Optic Sensing(FOS) techniques, pointing out their unique features and major differences. Recent advances in various FOS based monitoring systems, including Brillouin time domain distributed optical sensors and fibre Bragg grating(FBG) sensors, are investigated through a critical review of the laboratory studies and field applications used for underground geotechnical monitoring. Particular emphasis is given to fibre packaging, temperature compensation, installation methods and instrumentation performance in the underground environment. A detailed discussion of the advantages and limitations of each FOS monitoring system is also presented in this paper.
基金supported by the National Key Research and Development Program (Grant No. 2017YFC0504901)Sichuan Traffic Construction Science and Technology Project(Grant No. 2016B2–2)Doctoral Innovation Fund Program of Southwest Jiaotong University(Grant No. D-CX201804)
文摘Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.
基金Projects(2017YFC0804602,2017YFC0404802)supported by the National Key R&D Program of ChinaProject(2019JBM092)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Geotechnical stability analyses based on classical continuum may lead to remarkable underestimations on geotechnical safety.To attain better estimations on geotechnical stability,the micro-polar continuum is employed so that its internal characteristic length(lc)can be utilized to model the shear band width.Based on two soil slope examples,the role of internal characteristic length in modeling the shear band width of geomaterial is investigated by the second-order cone programming optimized micro-polar continuum finite element method.It is recognized that the underestimation on factor of safety(FOS)calculated from the classical continuum tends to be more pronounced with the increase of lc.When the micro-polar continuum is applied,the shear band dominated by lc is almost kept unaffected as long as the adopted meshes are fine enough,but it does not generally present a slip surface like in the cases from the classical continuum,indicating that the micro-polar continuum is capable of capturing the non-local geotechnical failure characteristic.Due to the coupling effects of lc and strain softening,softening behavior of geomaterial tends to be postponed.Additionally,the bearing capacity of a geotechnical system may be significantly underestimated,if the effects of lc are not modeled or considered in numerical analyses.
文摘Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.
基金supported by Karadeniz Technical University, Scientific Research Funding (No. BTAP-695)
文摘Economic development, industrialization and dense population in Trabzon City have caused residential construction to increase by 300% in the last decade. The settlement area is moun- tainous and covered with heavy vegetation. Thus, the steep-sided topography and heavy precipita- tion means floods and landslides are common and in areas with little flat land. Since the mass movements in some parts of city create an enormous danger for buildings, site selection for residen- tial areas becomes increasingly important. This paper describes geotechnical and seismic properties of Tertiary volcanic rock and establishes the link between these units and construction. In this study, refraction tomography and multichannel analysis surface wave methods were applied in order to seek the best construction site in the residential area. The results of the geophysical study were com- pared with the borehole applications. A series of geomechnical tests were carried out on the core samples. Following that, statistical correlations were conducted by regression analysis to evaluate re- lationships between measured parameters. Rock Quality Designation and weathering degree were also determined. The methodology defined in this investigation proves to be an appropriate ap- proach to determine geotechnical properties of the foundation rocks and soils and a proper guide on future geotechnical studies for other cities.
基金Projects(51774058,51674047)supported by the National Natural Science Foundation of ChinaProjects(cstc2016jcyjA1861,cstc2018jcyjA3320)supported by Chongqing Basic Science and Cutting-edge Technology Special Projects,ChinaProject(2015M570607)supported by Postdoctoral Science Foundation of China
文摘Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength properties and water-weakening properties were investigated.In situ stress environment and mining-induced fractured damage zone after excavation were studied to reveal the instability mechanism.The results show that red shale contains swelling and loose clayey minerals as interstitial filling material,producing low shear strength of microstructure and making it vulnerable to water.Macroscopically,a U-shaped curve of uniaxial compressive strength(UCS)exists with the increase of the angle between macro weakness plane and the horizon.However,its tensile strength reduced monotonically with this angle.While immersed in water for72h,its UCS reduced by91.9%comparing to the natural state.Field sonic tests reveal that an asymmetrical geometrical profile of fractured damage zone of gateroad was identified due to geological bedding plane and detailed gateroad layout with regards to the direction of major principle stress.Therefore,red shale is a kind of engineering soft rock.For ground control in underground mining or similar applications,water inflow within several hours of excavation must strictly be prevented and energy adsorbing rock bolt is recommended,especially in large deformation part of gateroad.
基金Projects(42002277,41972279,41772291)supported by the National Natural Science Foundation of ChinaProjects(2020M680321,2021T140046)supported by the China Postdoctoral Science Foundation+1 种基金Projects(2020-zz-081,2021-PC-003)supported by the Beijing Postdoctoral Research Foundation,ChinaProject(X21074)supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture,China。
文摘For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion.
文摘In the design of geotechnical infrastructure,engineers have to deal with naturally occurring soils and rocks which are subjected to spatial variability as well as other uncertainties such as errors in measurement and in modeling methods.Reliability assessment which provides a systematic approach for quantifying the risk of failure has been shown to be a promising tool for solving these challenging geotechnical engineering problems.The method provides a more consistent measure of the level of safety or“structural reliability”through the evaluation of a reliability index and the associated“failure”probability,and is a method that satisfies the need to clearly convey safety issues to the public and regulatory authorities.Various methods for calculating the reliability of geotechnical infrastructures with regard to the assessment of the ultimate and serviceability limit states have been proposed by many researchers and these approaches include:the direct Monte Carlo Simulation,Bayesian and other sampling techniques,the first-order reliability method and the second-order reliability method,the random field method,the response surface method and other surrogate models with the related probabilistic procedures.In this special issue of Geoscience Frontiers,we assemble eleven invited papers which provide insights on the latest developments and challenges in applying probabilistic and reliability methods to geotechnical infrastructure design.
文摘This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 people and destroyed 33 houses. The landslide involved 2.73 - 106 m3 of CSW and affected an area about 1100 m in length and 630 m in maximum width, making it the largest landfill landslide in the world. The investigation of this disaster used a combination of unmanned aerial vehicle surveillance and multistage remote-sensing images to reveal the increasing volume of waste in the landfill and the shifting shape of the landfill slope for nearly two years before the landslide took place, beginning with the creation of the CSW landfill in March, 2014, that resulted in the uncertain conditions of the landfill's boundaries and the unstable state of the hydrologic performance. As a result, applying conventional stability analysis methods used for natural landslides to this case would be difficult. In order to analyze this disaster, we took a multistage modeling technique to analyze the varied characteristics of the land- fill slope's structure at various stages of CSW dumping and used the non-steady flow theory to explain the groundwater seepage problem. The investigation showed that the landfill could be divided into two units based on the moisture in the land: (1) a front uint, consisted of the landfill slope, which had low water content; and (2) a rear unit, consisted of fresh waste, which had a high water content. This struc- ture caused two effects-surface-water infiltration and consolidation seepage that triggered the landslide in the landfill. Surface-water infiltration induced a gradual increase in pore water pressure head, or piezometric head, in the front slope because the infiltrating position rose as the volume of waste placement increased. Consolidation seepage led to higher excess pore water pressures as the loading of waste increased. We also investigated the post-failure soil dynamics parameters of the landslide deposit using cone penetration, triaxial, and ring-shear tests in order to simulate the characteristics of a flowing slide with a long run-out due to the liquefaction effect. Finally, we conclude the paper with lessons from the tens of catastrophic landslides of municipal solid waste around the world and discuss how to better manage the geotechnical risks of urbanization.
文摘Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.