The geomorphic evolution of the Xindiangou small watershed on the Loess Plateau in China is influenced by many factors,resulting in very complex evolutionary characteristics of erosion,morphology,and development.Since...The geomorphic evolution of the Xindiangou small watershed on the Loess Plateau in China is influenced by many factors,resulting in very complex evolutionary characteristics of erosion,morphology,and development.Since 1952,a number of soil and water conservation projects have been implemented in the watershed,especially the largescale project of returning farmland to forest and grass since 1999,which has significant impact on the erosion characteristics of the loess.This paper takes a unique perspective of the watershed geomorphic system and its watershed geomorphic entropy(WGE)and clarifies the geomorphic erosion characteristics of the Xindiangou small watershed.The results show that in the past 45 years,the entropy change of WGE of this watershed has generally shown the characteristics of entropy decrease and local entropy increase.The watershed is dominated by erosion in general,but due to the large-scale implementation of various soil and water conservation projects,especially the Project of Returning Farmland to Forests and Grasslands(RFFG),the landform erosion intensity has been greatly reduced and local increase in the entropy change of WGE has appeared.These projects have achieved good ecological effects after 11 years of implementation.展开更多
0 INTRODUCTION The Qilian Mountain Belt,at the forefront of the Tibetan Plateau's expansion,offers key insights into the plateau's tectonic deformation(Zuza et al.,2018;Zheng et al.,2010;Zhang et al.,2004;Tapp...0 INTRODUCTION The Qilian Mountain Belt,at the forefront of the Tibetan Plateau's expansion,offers key insights into the plateau's tectonic deformation(Zuza et al.,2018;Zheng et al.,2010;Zhang et al.,2004;Tapponnier et al.,2001;Meyer et al.,1998).The northwest-trending mountain ranges in the Qilian Shan(“Shan”means“Mountain”in Chinese)have significantly influenced this deformation(Zheng et al.,2013).展开更多
Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis usi...Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.展开更多
On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigatio...On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigations,high-resolution satellite images and multiple datatpes characterizing the seismogenic structure,topography and geology,this study attempts to discuss the influence of geomorphic and tectonic indexes on landslide distribution.The results show that the 2022 Luding earthquake with seismogenic fault at the Moxi fault,was a sinistral strike-slip event that triggered at least 4528landslides over an area of~2000 km2.These landslides span a total area of 28.1 km^(2),and the western section of the seismogenic fault,which serves as the active wall area,is characterized by a higher landslide concentration,especially in the Wandong Basin.The seismogenic fault and lithology influence the regional distribution of landslides,and more landslides occurred closer to the seismogenic fault and in the controlling lithologies of granite and dolomite.Local topography influences the landslide occurrence position on the slope;the eastern section is prone to form landslides in the lower gorge section,and the western section is prone to form landslides in the upper-top section of the gorge.For coseismic landslides in the eastern Baryan Har block,the eastern boundary(Longmenshan fault),where the earthquakes are characterized by thrusts with slight dextral strike-slip movement,could be the primary landslide-prone area;the southern boundary,the Moxi fault and the southern segment of the Xianshuihe fault,with more intensive strikeslip movement,may be the secondary landsideprone area;and the northern boundary is the tertiary landside-prone area.Additionally,the current landslide inventory may be underestimated although this underestimation has limited influence on the results.展开更多
A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of...A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of the main active faults in the fault system on the northern margin of the Hetao Basin and has produced frequent large-scale earthquakes since the Late Pleistocene. In the present study, following the segmentation regime of previous studies, we divide the fault zone into five segments, namely, the Baotou, Tuyouqi West, Tuzuoqi West, Bikeqi, and Hohhot segments, and we discuss the relationship between the drainage basin geomorphology and the piedmont fault activity in the Daqingshan area using 30 m spatial resolution Shuttle Radar Topography Mission(SRTM) digital elevation model(DEM) data. We use a range of geomorphic indices to examine the drainage basins in the Daqingshan area, including the channel steepness index(ksn), slope, hypsometric integral(HI), relief degree of land surface(RDLS), and stream lengthgradient index(SL), extracted with ArcGIS and MATLAB, and we also consider local lithologic and climate aspects. Furthermore, we compare the geomorphic indices with the slip rates of individual segments of the Daqingshan piedmont fault and paleoseismic data. The results show that the geomorphic indices of drainage basins in the Daqingshan area are primarily affected by the piedmont fault activity in the Daqingshan area. The geomorphic indices also demonstrate that piedmont fault activity has been the most intense in the middle segment of this fault system since the Late Quaternary and decreases towards the two sides.展开更多
The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape...The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape(BS),valley floor(VF),have been applied to evaluate the relative index of active tectonics(RIAT) of the Damanganga watershed.The high and low zones of tectonic activity have been identified based on the geomorphic analysis of the watershed.After evaluation of all indices,three classes,class IIhigh(1.3 ≤RIAT <1.5),class Ⅲ-moderate(1.5 ≤RIAT <1.8),and class Ⅳ-low(1.8 ≤RIAT),have been obtained to outline the degree/gradation of comparative tectonic activities in the study area.The appraised outcome of the RIAT dispersal is also well reinforced by the geomorphic evidence in the field.The collective outcomes of geomorphic evidence,such as stream deflection and analysis of lineament,deflection of streams,and geomorphic indices,conceal that the Damanganga watershed is affected by tectonic activity.展开更多
Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the fiel...Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.展开更多
Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorph...Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.展开更多
Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geo...Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.展开更多
This paper tests a data mining method for evaluation of the "IRTA"(Index of Relative Tectonic Activity) to investigate the impact of active tectonics on geomorphic processes and landscape development. Based upon K...This paper tests a data mining method for evaluation of the "IRTA"(Index of Relative Tectonic Activity) to investigate the impact of active tectonics on geomorphic processes and landscape development. Based upon K-means clustering of six basin-related geomorphic indices(the hypsometric integral, basin asymmetric factor, drainage density, basin shape ratio, mean axial slope of the channel and topographic roughness) that represent the relative strength of active tectonic deformation on topography and morphology, the relative tectonic activity along the Kazerun Fault Zone in the Zagros Mountains of Iran may be classified into low, moderate and high relative tectonic activity zones. The results allow the identification of the clusters of similarly deformed areas related to relative tectonic activity. The utilization of geomorphic parameters as well as IRTA with comparison to the field observations exhibit change in relative tectonic activities mostly corresponding to the change in mechanism of the prominent fault zones in the study area.展开更多
We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and ...We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.展开更多
Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition proces...Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes. Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions. The study area is a junction of three important mt^unlain ranges (Hindu Kush-Karakorunl-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision. We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral (Hl). stream-length gradient (SL), fractal dimension (FD), basin asymmetry factor (AF), basin shape index (B,), valley floor width to wllley height ratio (Vf) and motmtain front sinuosity (Star). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using GIS. The average of the seven measured geomorphic indices was used to ewfluate the distri- bution of relative tectonic activity in the study area. We defined tour classes to define the degree of rela- tive tectonic activity: class 1 very high (1.0 ≤ IRAT 〈 1.3); class 2 high (1.3 ≥ IRAT 〈 1.5): class 3--moderate (1.5 〉 IRAT 〈 1.8); and class 4--low (1.8 〉 IRAT). In view of the results, we conclude that this combined approach allows the identification of the highly deformed areas related to active tectonics. Landsat imagery and field observations also evidence the presence of active tectonics based on the deflected streams, deformed landforms, active mountain fronts and triangular facets. The indicative values of IRAT are consistent with the areas of known relative uplift rates, landforms and geology.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,...In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.展开更多
An M_(S)6.4 earthquake occurred in Yangbi,Yunnan province,on May 21,2021.According to related investigations,the macro-epicenter of the earthquake is 6 km northwest of Yangbi County,and the seismogenic structure is th...An M_(S)6.4 earthquake occurred in Yangbi,Yunnan province,on May 21,2021.According to related investigations,the macro-epicenter of the earthquake is 6 km northwest of Yangbi County,and the seismogenic structure is the NW-trending Weixi-Qiaohou fault.The earthquake area is located in the hinterland of the Hengduan Mountains in the northwest of Yunnan Province,a region dominated by high and medium-high mountains,with deep canyons and tectonic basins in between.Various geomorphic features are derived from drastic topographic changes and huge geological differences in the earthquake area.There are a variety of buildings in the earthquake-affected zone,including civil and brick-wood structures ones with weak seismic performance,as well as brick-concrete and frame ones with better seismic performance.This paper summarizes and analyzes different characteristics of the earthquake in different geomorphic units through field investigations of different buildings and geological disasters in the affected area.The results show that under the same earthquake intensity,the damage to most buildings(located in slope areas or rooted in weak strata)is amplified by the earthquake.The earthquake has exerted an obvious propagation effect along the direction of the seismogenic structure.Moreover,local ground fissures will aggravate the damage to the buildings even without surface dislocation.Thus,we suggest that attention should be paid to the ground fissures caused by the slope effect.The fissure areas may also be the disaster spot of collapses and landslides in case of a high-magnitude earthquake.展开更多
Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deform...Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deformation.Thus,information on the tectonic activity of a defined area could be derived via landscape analysis.This study uses topography and geomorphic indices to extract signals of ongoing tectonic deformation along the Mexican subduction forearc within the Guerrero sector.For this purpose,we use field data,topographical data,knickpoints,the ratio of volume to area(Rva).the stream-length gradient index(St),and the normalized channel steepness index(k_(sn)).The results of the applied landscape analysis reveal considerable variations in relief,topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone.We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc.A significant drop from central and eastern parts of the study area towards the west in values of R_(VA)(from ~500 to^300),St(from ~500 to ca.400),maximum St(from ~1500-2500 to ~ 1000) and k_(sn)(from ~150 to ~100) denotes a decrease in relative tectonic uplift in the same direction.We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology.Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift.The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.展开更多
The economic benefits of transport infrastructure investment have been widely accepted.However,the varying influence of road transport development across vertical space has rarely been discussed.Taking Sichuan provinc...The economic benefits of transport infrastructure investment have been widely accepted.However,the varying influence of road transport development across vertical space has rarely been discussed.Taking Sichuan province in China as case study area where the landform is diverse and complex,administrative counties were categorized into 4 main types:plain counties,hill counties,mountain counties,and plateau counties.Using statistical data during 2006-2014,theperformanceofeconomic development and transport construction level in the four types of counties are discussed.Subsequently,the heterogeneous effect of each grade road on economy was calculated by local regression model(GWR).The results indicate that plain counties largely surpassed the other geomorphic counties in economic development level,while the gradient gap among them was on the decline.Similarly,distribution of transport infrastructure presented a decreasing trend from the low plain counties to high plateau counties.Regional imbalances were mainly reflected in the County road and Village road.Regarding the changes of regional gaps,National&Provincial roads and County roads were constantly expanding,whereas the disparity of Village road was slowly narrowing over time.Particularly noteworthy was the non-stationary economic influence of traffic factors across vertical gradients.On average,National&Provincial roads generated higher benefits in the high elevation regions than the lowlands.In contrast,County road and Village road were found to be more effective in promoting economic development in plains.With regard to local estimates of traffic factors,coefficients in mountain counties exhibited larger fluctuation ranges than other geomorphic units.The conclusions provide a basis for government decisionmaking in a more reasonable construction arrangement of road facilities and sustainable economic development.展开更多
The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphologi...The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphological structures in this area are three main graben structures resulting from regional N-S extension since the Early Miocene. These structures are the E-W trending Büyük Menderes, Kü?ük Menderes, and Gediz grabens. S?ke Basin is located at the SW end of the Büyük Menderes graben. The lineaments which control the NW of S?ke Basin have a length of approximately 40 km and have been defined as the Priene-Sazl? Fault(PSF). The PSF is seismically active, and the last large earthquake(the S?ke-Balat earthquake; Ms: 6.8) was produced on July 16 th of 1955. The ancient city of Priene, which was located in the study area, suffered from destructive earthquakes(in the 4 th century and 2 nd century BC, in the 2 nd century AD, during the Byzantine period and after the 12 th century BC). This study aims to reveal the effect of the PSF on the morphotectonic evolution of the region and the relative tectonic activity of the fault. To this end, it was the first time the stream length gradient index(SL: 130-1303), mountain-front sinuosity(Smf: 1.15-1.96), valley floor height and valley width ratio(Vf: 0.27-1.66), drainage basin asymmetry(AF: 0.15-0.76), hypsometric curve(HC) and hypsometric integral(HI: 0.22-0.86) and basin shape index(Bs: 1.04-5.75) along the mountain front that is formed by the PSF. Using a combination of the mountain-front sinuosity(Smf), valley floor height and valley width ratio(Vf), it is found that the uplift ratio in the region is not less than 0.05 mm/yr and the relative tectonic activity of PSF is high. According to the relative tectonic activity index(Iat) obtained from geomorphic indices, the southwest part of the PSF is relatively more active than the northeast part. As a result, I posit that the PSF has the potential to produce earthquakes in the future similarly to those that were produced in the past, and that the most destructive earthquakes will likely occur on the southwest segments of the fault according to geomorphic indices.展开更多
Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon ...Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable展开更多
Gullies in semi-arid region are important in landscape modification, degradation and increased overland flow affecting geomorphic thresholds of an area. Gullies generate about 95% of global sediment load, important in...Gullies in semi-arid region are important in landscape modification, degradation and increased overland flow affecting geomorphic thresholds of an area. Gullies generate about 95% of global sediment load, important in landscape modification, degradation and increased overland flow in semi-arid regions, but little is known on geomorphic factors that increase ecological fragility increasing gully initiation. To address the problem, landscape regions of accelerated geomorphic processes must be determined. The study aimed to establish topographical thresholds and geomorphic factors which increase landscape fragility in gully head positions in different geographical regions. Gully heads were analyzed by detailed field surveys from 10 m up and down-slope position. Drainage area contributing to gully was demarcated from the point overland flow was assumed to reach the gully head based on water visible flow-lines while gully head slopes were determined by use of clinometers. Gully threshold concept was applied to identify the critical slope (<i>S</i>) and drainage area (<i>A</i>), using appropriate <i>S</i> - <i>A</i> relation (<i>S</i> = <i>a</i><i>A</i><sup>b</sup>) and verified using ANOVA. The empirical <i>S</i> - <i>A</i> threshold relation <i>S</i> = 0.383<i>A</i><sup>-0.397</sup>, <i>R</i><sup>2</sup> = 0.0321 (upper-segment), <i>S</i> = 0.174<i>A</i><sup>-0.032</sup>, <i>R</i><sup>2</sup> = 0.498 (mid-segment), <i>S</i> = 0.23<i>A</i><sup>-0.020</sup>, <i>R</i><sup>2</sup> = 0.088 (lower segment), represented approximate critical slope-drainage area for gully initiation and regions of dominant geomorphic processes, above which gully initiation was likely to occur. Negative <i>b</i> values represent an areas more dominated by overland flow over sub-surface processes. Coefficient of correlation multiple <i>R</i> = 0.7055 (70.55%) Mid-segment indicated strong relation slope-drainage area for gully initiation. ANOVA analysis p = 0.01, 0.004 and 0.4498 for upper, mid and lower segment respectively revealed stronger relation between independent and dependent variables. p > 0.05 indicated regions influenced by more factors than slope and drainage area. Thus, slope-drainage threshold relation line can be applied in the semi-arid environments to locate vulnerable sites of dominant geomorphic processes which should be checked for gully conservation.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.42271417)the financial support from the National Natural Science Foundation of China。
文摘The geomorphic evolution of the Xindiangou small watershed on the Loess Plateau in China is influenced by many factors,resulting in very complex evolutionary characteristics of erosion,morphology,and development.Since 1952,a number of soil and water conservation projects have been implemented in the watershed,especially the largescale project of returning farmland to forest and grass since 1999,which has significant impact on the erosion characteristics of the loess.This paper takes a unique perspective of the watershed geomorphic system and its watershed geomorphic entropy(WGE)and clarifies the geomorphic erosion characteristics of the Xindiangou small watershed.The results show that in the past 45 years,the entropy change of WGE of this watershed has generally shown the characteristics of entropy decrease and local entropy increase.The watershed is dominated by erosion in general,but due to the large-scale implementation of various soil and water conservation projects,especially the Project of Returning Farmland to Forests and Grasslands(RFFG),the landform erosion intensity has been greatly reduced and local increase in the entropy change of WGE has appeared.These projects have achieved good ecological effects after 11 years of implementation.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0901)the State Key Laboratory of Earthquake Dynamics(No.LED2023B04)+1 种基金the National Natural Science Foundation of China(Nos.42272242,W2411033,W2521003)the Science and Technology Plan of Gansu Province(No.22JR11RA088)。
文摘0 INTRODUCTION The Qilian Mountain Belt,at the forefront of the Tibetan Plateau's expansion,offers key insights into the plateau's tectonic deformation(Zuza et al.,2018;Zheng et al.,2010;Zhang et al.,2004;Tapponnier et al.,2001;Meyer et al.,1998).The northwest-trending mountain ranges in the Qilian Shan(“Shan”means“Mountain”in Chinese)have significantly influenced this deformation(Zheng et al.,2013).
文摘Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.
基金supported by National Natural Science Foundation of China(Grant No.U22A20603,U21A2008,42007273)the Special Assistant Researcher Foundation of Chinese Academy of Sciences(Zhao Bo)+1 种基金the China Postdoctoral Science Foundation(2020M673292,and 2021T140650)the IMHE Youth S&T Foundation(SDS-QN-2106)。
文摘On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigations,high-resolution satellite images and multiple datatpes characterizing the seismogenic structure,topography and geology,this study attempts to discuss the influence of geomorphic and tectonic indexes on landslide distribution.The results show that the 2022 Luding earthquake with seismogenic fault at the Moxi fault,was a sinistral strike-slip event that triggered at least 4528landslides over an area of~2000 km2.These landslides span a total area of 28.1 km^(2),and the western section of the seismogenic fault,which serves as the active wall area,is characterized by a higher landslide concentration,especially in the Wandong Basin.The seismogenic fault and lithology influence the regional distribution of landslides,and more landslides occurred closer to the seismogenic fault and in the controlling lithologies of granite and dolomite.Local topography influences the landslide occurrence position on the slope;the eastern section is prone to form landslides in the lower gorge section,and the western section is prone to form landslides in the upper-top section of the gorge.For coseismic landslides in the eastern Baryan Har block,the eastern boundary(Longmenshan fault),where the earthquakes are characterized by thrusts with slight dextral strike-slip movement,could be the primary landslide-prone area;the southern boundary,the Moxi fault and the southern segment of the Xianshuihe fault,with more intensive strikeslip movement,may be the secondary landsideprone area;and the northern boundary is the tertiary landside-prone area.Additionally,the current landslide inventory may be underestimated although this underestimation has limited influence on the results.
基金supported by a research grant from the Institute of Crustal Dynamics,China Earthquake Administration(No.ZDJ2019-21)the National Natural Science Foundation of China(Nos.41872227,41602221)。
文摘A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of the main active faults in the fault system on the northern margin of the Hetao Basin and has produced frequent large-scale earthquakes since the Late Pleistocene. In the present study, following the segmentation regime of previous studies, we divide the fault zone into five segments, namely, the Baotou, Tuyouqi West, Tuzuoqi West, Bikeqi, and Hohhot segments, and we discuss the relationship between the drainage basin geomorphology and the piedmont fault activity in the Daqingshan area using 30 m spatial resolution Shuttle Radar Topography Mission(SRTM) digital elevation model(DEM) data. We use a range of geomorphic indices to examine the drainage basins in the Daqingshan area, including the channel steepness index(ksn), slope, hypsometric integral(HI), relief degree of land surface(RDLS), and stream lengthgradient index(SL), extracted with ArcGIS and MATLAB, and we also consider local lithologic and climate aspects. Furthermore, we compare the geomorphic indices with the slip rates of individual segments of the Daqingshan piedmont fault and paleoseismic data. The results show that the geomorphic indices of drainage basins in the Daqingshan area are primarily affected by the piedmont fault activity in the Daqingshan area. The geomorphic indices also demonstrate that piedmont fault activity has been the most intense in the middle segment of this fault system since the Late Quaternary and decreases towards the two sides.
基金DG ISR and DST (GoG) for providing required supportDMC Dadra and Nagar Haveli (DNH/1255) for providing financial support。
文摘The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape(BS),valley floor(VF),have been applied to evaluate the relative index of active tectonics(RIAT) of the Damanganga watershed.The high and low zones of tectonic activity have been identified based on the geomorphic analysis of the watershed.After evaluation of all indices,three classes,class IIhigh(1.3 ≤RIAT <1.5),class Ⅲ-moderate(1.5 ≤RIAT <1.8),and class Ⅳ-low(1.8 ≤RIAT),have been obtained to outline the degree/gradation of comparative tectonic activities in the study area.The appraised outcome of the RIAT dispersal is also well reinforced by the geomorphic evidence in the field.The collective outcomes of geomorphic evidence,such as stream deflection and analysis of lineament,deflection of streams,and geomorphic indices,conceal that the Damanganga watershed is affected by tectonic activity.
基金financially supported by the National Natural Science Foundation of China(41571256)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1503101)the Natural Science Foundation of Xinjiang,China(2015211C292)
文摘Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.
基金financially supported by the National Key Research and Development Program of China (2016YFA0601601)the National Science and Technology Support Program (2013BAB06B03)+2 种基金the National Natural Science Foundation of China (41472155)Candidates of the Young and MiddleAged Academic Leaders of Yunnan Province (2014HB005)Program for Excellent Young Talents of Yunnan University
文摘Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA12A406)the National Natural Science Foundation of China(No.41271409)the National Science and Technology Major Project(No.00-Y30B15-9001-14/16-5)
文摘Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.
基金the Research Council of Shiraz University which has supported the project
文摘This paper tests a data mining method for evaluation of the "IRTA"(Index of Relative Tectonic Activity) to investigate the impact of active tectonics on geomorphic processes and landscape development. Based upon K-means clustering of six basin-related geomorphic indices(the hypsometric integral, basin asymmetric factor, drainage density, basin shape ratio, mean axial slope of the channel and topographic roughness) that represent the relative strength of active tectonic deformation on topography and morphology, the relative tectonic activity along the Kazerun Fault Zone in the Zagros Mountains of Iran may be classified into low, moderate and high relative tectonic activity zones. The results allow the identification of the clusters of similarly deformed areas related to relative tectonic activity. The utilization of geomorphic parameters as well as IRTA with comparison to the field observations exhibit change in relative tectonic activities mostly corresponding to the change in mechanism of the prominent fault zones in the study area.
基金the funding from the Natural Science Foundation of China through Grant No. 40638038 and 2010011044-1
文摘We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.
基金Financial support to Syed Amer Mahmood from University of the Punjab,Lahore Government of Pakistan Remote Sensing GroupTU Freiberg,Germanypartial support from German Academic Exchange Association(DAAD)International Association of Mathematical Geosciences(IAMG)
文摘Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes. Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions. The study area is a junction of three important mt^unlain ranges (Hindu Kush-Karakorunl-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision. We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral (Hl). stream-length gradient (SL), fractal dimension (FD), basin asymmetry factor (AF), basin shape index (B,), valley floor width to wllley height ratio (Vf) and motmtain front sinuosity (Star). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using GIS. The average of the seven measured geomorphic indices was used to ewfluate the distri- bution of relative tectonic activity in the study area. We defined tour classes to define the degree of rela- tive tectonic activity: class 1 very high (1.0 ≤ IRAT 〈 1.3); class 2 high (1.3 ≥ IRAT 〈 1.5): class 3--moderate (1.5 〉 IRAT 〈 1.8); and class 4--low (1.8 〉 IRAT). In view of the results, we conclude that this combined approach allows the identification of the highly deformed areas related to active tectonics. Landsat imagery and field observations also evidence the presence of active tectonics based on the deflected streams, deformed landforms, active mountain fronts and triangular facets. The indicative values of IRAT are consistent with the areas of known relative uplift rates, landforms and geology.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
文摘In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.
基金the support from the National Natural Science Foundation of China Projects (41472204, U2002211).
文摘An M_(S)6.4 earthquake occurred in Yangbi,Yunnan province,on May 21,2021.According to related investigations,the macro-epicenter of the earthquake is 6 km northwest of Yangbi County,and the seismogenic structure is the NW-trending Weixi-Qiaohou fault.The earthquake area is located in the hinterland of the Hengduan Mountains in the northwest of Yunnan Province,a region dominated by high and medium-high mountains,with deep canyons and tectonic basins in between.Various geomorphic features are derived from drastic topographic changes and huge geological differences in the earthquake area.There are a variety of buildings in the earthquake-affected zone,including civil and brick-wood structures ones with weak seismic performance,as well as brick-concrete and frame ones with better seismic performance.This paper summarizes and analyzes different characteristics of the earthquake in different geomorphic units through field investigations of different buildings and geological disasters in the affected area.The results show that under the same earthquake intensity,the damage to most buildings(located in slope areas or rooted in weak strata)is amplified by the earthquake.The earthquake has exerted an obvious propagation effect along the direction of the seismogenic structure.Moreover,local ground fissures will aggravate the damage to the buildings even without surface dislocation.Thus,we suggest that attention should be paid to the ground fissures caused by the slope effect.The fissure areas may also be the disaster spot of collapses and landslides in case of a high-magnitude earthquake.
基金funding provided by CONACYT-SEP Ciencia Basica(Grant No.129456):Active Tectonic Deformation along the Pacific Coast of Mexico and by the research grants PAPIIT IN110514 and DGAPA-PASPA 2015-2016a postdoctoral fellowship provided through the DGAPA-UNAM program
文摘Tectonically active areas,such as forearc regions,commonly show contrasting relief,differential tectonic uplift,variations in erosion rates,in river incision,and in channel gradient produced by ongoing tectonic deformation.Thus,information on the tectonic activity of a defined area could be derived via landscape analysis.This study uses topography and geomorphic indices to extract signals of ongoing tectonic deformation along the Mexican subduction forearc within the Guerrero sector.For this purpose,we use field data,topographical data,knickpoints,the ratio of volume to area(Rva).the stream-length gradient index(St),and the normalized channel steepness index(k_(sn)).The results of the applied landscape analysis reveal considerable variations in relief,topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone.We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc.A significant drop from central and eastern parts of the study area towards the west in values of R_(VA)(from ~500 to^300),St(from ~500 to ca.400),maximum St(from ~1500-2500 to ~ 1000) and k_(sn)(from ~150 to ~100) denotes a decrease in relative tectonic uplift in the same direction.We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology.Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift.The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.
基金supported by the National Natural Science Foundation of China (Grants No. 41571523 and 41661144038)the National Basic Research Program of China (973 Program) (Grant No. 2013CBA01808)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAC05B01)
文摘The economic benefits of transport infrastructure investment have been widely accepted.However,the varying influence of road transport development across vertical space has rarely been discussed.Taking Sichuan province in China as case study area where the landform is diverse and complex,administrative counties were categorized into 4 main types:plain counties,hill counties,mountain counties,and plateau counties.Using statistical data during 2006-2014,theperformanceofeconomic development and transport construction level in the four types of counties are discussed.Subsequently,the heterogeneous effect of each grade road on economy was calculated by local regression model(GWR).The results indicate that plain counties largely surpassed the other geomorphic counties in economic development level,while the gradient gap among them was on the decline.Similarly,distribution of transport infrastructure presented a decreasing trend from the low plain counties to high plateau counties.Regional imbalances were mainly reflected in the County road and Village road.Regarding the changes of regional gaps,National&Provincial roads and County roads were constantly expanding,whereas the disparity of Village road was slowly narrowing over time.Particularly noteworthy was the non-stationary economic influence of traffic factors across vertical gradients.On average,National&Provincial roads generated higher benefits in the high elevation regions than the lowlands.In contrast,County road and Village road were found to be more effective in promoting economic development in plains.With regard to local estimates of traffic factors,coefficients in mountain counties exhibited larger fluctuation ranges than other geomorphic units.The conclusions provide a basis for government decisionmaking in a more reasonable construction arrangement of road facilities and sustainable economic development.
文摘The West Anatolia Extensional Zone, which has a width of about 300 km, is located within the Alpine-Himalayan belt and is one of the regions with intense seismic activity in the world. The most important geomorphological structures in this area are three main graben structures resulting from regional N-S extension since the Early Miocene. These structures are the E-W trending Büyük Menderes, Kü?ük Menderes, and Gediz grabens. S?ke Basin is located at the SW end of the Büyük Menderes graben. The lineaments which control the NW of S?ke Basin have a length of approximately 40 km and have been defined as the Priene-Sazl? Fault(PSF). The PSF is seismically active, and the last large earthquake(the S?ke-Balat earthquake; Ms: 6.8) was produced on July 16 th of 1955. The ancient city of Priene, which was located in the study area, suffered from destructive earthquakes(in the 4 th century and 2 nd century BC, in the 2 nd century AD, during the Byzantine period and after the 12 th century BC). This study aims to reveal the effect of the PSF on the morphotectonic evolution of the region and the relative tectonic activity of the fault. To this end, it was the first time the stream length gradient index(SL: 130-1303), mountain-front sinuosity(Smf: 1.15-1.96), valley floor height and valley width ratio(Vf: 0.27-1.66), drainage basin asymmetry(AF: 0.15-0.76), hypsometric curve(HC) and hypsometric integral(HI: 0.22-0.86) and basin shape index(Bs: 1.04-5.75) along the mountain front that is formed by the PSF. Using a combination of the mountain-front sinuosity(Smf), valley floor height and valley width ratio(Vf), it is found that the uplift ratio in the region is not less than 0.05 mm/yr and the relative tectonic activity of PSF is high. According to the relative tectonic activity index(Iat) obtained from geomorphic indices, the southwest part of the PSF is relatively more active than the northeast part. As a result, I posit that the PSF has the potential to produce earthquakes in the future similarly to those that were produced in the past, and that the most destructive earthquakes will likely occur on the southwest segments of the fault according to geomorphic indices.
基金This paper presents one of the research results of a key project in Ninth Five-Year Program was supported by China Seismological Bureau grant (95-04-10-04). Institute of Geology, CSB, contribution No.2000B0034.
文摘Two sets of active faults,northwest-and northeast-trending faults,are developed in the Chao-shan Plain of East Guangdong.After detailed interpretation of aerophotos,we have found outthat there is the clear phenomenon of sinistral dislocation of drainage system on the Huang-gang-shui fault and part of Fengshun-Shantou fault.Field investigation confirmed that the geo-morphic bodies along the two faults have undergone displacement.Large-scale topographicmapping was made at three displaced sites and samples for age dating were collected from thegeomorphic booies.Calculation indicates that the average rate of sinistral strike-slip movementin the Holocene time amounts to 1.11±0.09~2.69±0.24mm/a along the Huanggangshuifault and 3.26±0.26mm/a along the Fengshun-Shantou fault.These two more active NW-trending faults extend into sea area,where they intersect the NE-trending strongly active Nius-han Island-Xiongdi Isle-Nanpeng Isles fault at a depth of 40~50m in water.The intersection isa location favorable
文摘Gullies in semi-arid region are important in landscape modification, degradation and increased overland flow affecting geomorphic thresholds of an area. Gullies generate about 95% of global sediment load, important in landscape modification, degradation and increased overland flow in semi-arid regions, but little is known on geomorphic factors that increase ecological fragility increasing gully initiation. To address the problem, landscape regions of accelerated geomorphic processes must be determined. The study aimed to establish topographical thresholds and geomorphic factors which increase landscape fragility in gully head positions in different geographical regions. Gully heads were analyzed by detailed field surveys from 10 m up and down-slope position. Drainage area contributing to gully was demarcated from the point overland flow was assumed to reach the gully head based on water visible flow-lines while gully head slopes were determined by use of clinometers. Gully threshold concept was applied to identify the critical slope (<i>S</i>) and drainage area (<i>A</i>), using appropriate <i>S</i> - <i>A</i> relation (<i>S</i> = <i>a</i><i>A</i><sup>b</sup>) and verified using ANOVA. The empirical <i>S</i> - <i>A</i> threshold relation <i>S</i> = 0.383<i>A</i><sup>-0.397</sup>, <i>R</i><sup>2</sup> = 0.0321 (upper-segment), <i>S</i> = 0.174<i>A</i><sup>-0.032</sup>, <i>R</i><sup>2</sup> = 0.498 (mid-segment), <i>S</i> = 0.23<i>A</i><sup>-0.020</sup>, <i>R</i><sup>2</sup> = 0.088 (lower segment), represented approximate critical slope-drainage area for gully initiation and regions of dominant geomorphic processes, above which gully initiation was likely to occur. Negative <i>b</i> values represent an areas more dominated by overland flow over sub-surface processes. Coefficient of correlation multiple <i>R</i> = 0.7055 (70.55%) Mid-segment indicated strong relation slope-drainage area for gully initiation. ANOVA analysis p = 0.01, 0.004 and 0.4498 for upper, mid and lower segment respectively revealed stronger relation between independent and dependent variables. p > 0.05 indicated regions influenced by more factors than slope and drainage area. Thus, slope-drainage threshold relation line can be applied in the semi-arid environments to locate vulnerable sites of dominant geomorphic processes which should be checked for gully conservation.