We study irreducible tensors. the real and complex geometric simplicity of nonnegative First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an even-...We study irreducible tensors. the real and complex geometric simplicity of nonnegative First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an even- order nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.展开更多
The emergence of a large quantity of digital resources in geometry, various geometric automated theorem proving systems, and kinds of dynamic geometry software systems has made geometric computation, reasoning, drawin...The emergence of a large quantity of digital resources in geometry, various geometric automated theorem proving systems, and kinds of dynamic geometry software systems has made geometric computation, reasoning, drawing, and knowledge management dynamic, automatic or interactive on computer. Integration of electronic contents and different systems is desired to enhance their accessibility and exploitability. This paper proposes an equivalent transformation framework for manipulating geometric statements available in the literature by using geometry software systems. Such a framework works based on a newly designed geometry description language(GDL), in which geometric statements can be represented naturally and easily. The author discusses and presents key procedures of automatically transforming GDL statements into target system-native representations for manipulation.The author also demonstrates the framework by illustrating equivalent transformation processes and interfaces for compiling the transformation results into executable formats that can be interpreted by the target geometry software systems for automated theorem proving and dynamic diagram drawing.展开更多
Weispfenning in 1992 introduced the concepts of comprehensive Gr?bner system/basis of a parametric polynomial system, and he also presented an algorithm to compute them. Since then,this research ?eld has attracted muc...Weispfenning in 1992 introduced the concepts of comprehensive Gr?bner system/basis of a parametric polynomial system, and he also presented an algorithm to compute them. Since then,this research ?eld has attracted much attention over the past several decades, and many effcient algorithms have been proposed. Moreover, these algorithms have been applied to many different ?elds,such as parametric polynomial equations solving, geometric theorem proving and discovering, quanti?er elimination, and so on. This survey brings together the works published between 1992 and 2018, and we hope that this survey is valuable for this research area.展开更多
文摘We study irreducible tensors. the real and complex geometric simplicity of nonnegative First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an even- order nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.
基金supported partially by the SKLSDE Open Fund(SKLSDE-2011KF-02)the Natural Science Foundation of China under Grant No.61003139the MOE-Intel Joint Research Fund(MOE-INTEL-11-03)
文摘The emergence of a large quantity of digital resources in geometry, various geometric automated theorem proving systems, and kinds of dynamic geometry software systems has made geometric computation, reasoning, drawing, and knowledge management dynamic, automatic or interactive on computer. Integration of electronic contents and different systems is desired to enhance their accessibility and exploitability. This paper proposes an equivalent transformation framework for manipulating geometric statements available in the literature by using geometry software systems. Such a framework works based on a newly designed geometry description language(GDL), in which geometric statements can be represented naturally and easily. The author discusses and presents key procedures of automatically transforming GDL statements into target system-native representations for manipulation.The author also demonstrates the framework by illustrating equivalent transformation processes and interfaces for compiling the transformation results into executable formats that can be interpreted by the target geometry software systems for automated theorem proving and dynamic diagram drawing.
基金supported in part by the CAS Project QYZDJ-SSW-SYS022the National Natural Science Foundation of China under Grant No.61877058the Strategy Cooperation Project AQ-1701
文摘Weispfenning in 1992 introduced the concepts of comprehensive Gr?bner system/basis of a parametric polynomial system, and he also presented an algorithm to compute them. Since then,this research ?eld has attracted much attention over the past several decades, and many effcient algorithms have been proposed. Moreover, these algorithms have been applied to many different ?elds,such as parametric polynomial equations solving, geometric theorem proving and discovering, quanti?er elimination, and so on. This survey brings together the works published between 1992 and 2018, and we hope that this survey is valuable for this research area.