Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a disto...Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.展开更多
A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deform...A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175)
文摘Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10862002 and 11062008)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0909)the Natural Science Foundation of Inner Mongolia (Grant No. 2010BS0106)
文摘A mode II crack in single-crystal silicon was investigated experimentally using high-resolution transmission electron microscopy.Geometric phase analysis and numerical moiré method were employed to map the deformation fields of the crack-tip area.The normal strain field maps of the crack-tip area indeed showed the deformation occurs primarily in the vicinity of the dislocations and the normal strains are near zero in the crack-tip area.The shear strain field map shows that the relatively large shear strain is in the crack-tip area.The experimental results were compared with the predictions of linear elastic fracture mechanics.The comparison shows that measured strain distribution ahead of the crack-tip agrees with the predictions of linear elastic fracture mechanics up to 1 nm from the crack-tip.