[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ...[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.展开更多
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tange...Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.展开更多
Segregation results in worse mechanical and durability performance of concrete.Therefore,an accurate modelling of segregation is required for reliable mesoscale modelling.In this context,this paper presents a method t...Segregation results in worse mechanical and durability performance of concrete.Therefore,an accurate modelling of segregation is required for reliable mesoscale modelling.In this context,this paper presents a method to develop the geometric mesoscale modelling of concrete taking into account segregation.In this method,coarse aggregate particles are generated as ellipsoids of random geometry and are randomly placed within concrete.The specimen is stratified in different numbers of layers(NoL)that represent different segregation conditions.The geometric models of four concrete mix designs are generated and the relevant key parameters,e.g.aggregate distribution are analysed and validated.In addition,the segregation level of generated models is classified based on the volumetric index and the correspondence between segregation level and the value of NoL is presented.The results show that 1)The generated geometric models with NoL ranging from 1 to 10 align well with real segregation in concrete and can accurately represent the majority of segregation cases resulting from various experimental factors;2)The NoL reflects the segregation level:more layers indicate a more heterogeneous mesostructure;3)The larger aggregates of the generated models tend to settle at the bottom,while smaller aggregates rise toward the top,leading to uneven vertical distribution,especially as the NoL increases;4)the mix 1 with low aggregate content can represent the construction material with large segregation,while the mix 2 is inverse.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the de...Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the deltaic areas.In this study,we use a conceptual geometric model to evaluate the role played by this factor,on the basis of the principle of mass conservation.The Ganges-Brahmaputra,Mekong and Nile deltas are examined as three typical examples,in terms of their different original seabed morphologies.The control variate method is applied to eliminate the effect of the difference in model input variables.The results show that,assuming a constant sediment load,the delta growth rate will decrease with time;a higher value of the original seabed slope leads to a lower shoreline progradation rate for the subaerial delta and a higher growth rate for the subaqueous delta.Thus,the original seabed morphology represented by slope is a critical factor affecting the evolution of Holocene large-river deltas.These results explain the interrelationships between sediment load,deltaic plain area,and the original seabed slopes for the 27 large-river deltas worldwide,located in the middle/low latitudes,with different tectonic backgrounds.In the future,the conceptual geometric model may be combined with sediment dynamic modeling to identify more details of the evolution of these deltas.展开更多
To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of...To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of basic pipe components such as straight sections,bends and elbows,and tee joints are discussed and the relevant mathematical formulations for these components are derived.Next,after analyzing the function of MDRM and various element division strategies,the sectional division and blocked division methods are introduced and applied to the appropriate pipeline components to determine the volume and center coordinates of each element,establishing the general models for the three typical pipeline components considered.The resulting volume and center coordinates of each component are the fundamental parameters for determining the MAD forwarding of underground ferromagnetic pipelines using the MDRM.Finally,based on the combination and transformation of the basic pipeline components considered,the visualized geometric models of typical pipeline layouts including parallel pipelines,pipelines with elbows,and a pipeline with a tee joint are constructed.The results demonstrate the feasibility of the proposed method of geometric modeling for the MDRM,which can be further applied to the finite element modeling of these and other components when analyzing MAD data.Furthermore,the models with output parameters proposed in this paper establish a foundation for the inversion of MAD.展开更多
The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filam...The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filament curves on the Stratasys 1600 FDM machine, it is indicated that the tractrix model had the best agreement with the actual measured curves. With the analytical simulation, the nozzle trajectories in the straight-line deposition road, circle road, and arbitrary continuous curve road were deduced, according to the traxtric based geometrical model of the filament.展开更多
A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-...A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
In this paper,the optical efficiency and output thermal power of the heliostat mirror field are analyzed and optimized by constructing a geometric model and an optimization algorithm for the optimal design of the heli...In this paper,the optical efficiency and output thermal power of the heliostat mirror field are analyzed and optimized by constructing a geometric model and an optimization algorithm for the optimal design of the heliostat mirror field of a tower-type solar photovoltaic power plant.First,based on the solar position model and the optical efficiency model of the heliostat mirror field,the annual average optical efficiency,the annual average output thermal power,and the annual average output thermal power per unit mirror area of the heliostat mirror field are calculated.Secondly,the EB layout was used to optimize the heliostat field,and the parameters of heliostat size and mounting height were optimized by genetic algorithm and particle swarm algorithm to maximize the annual average output thermal power per unit mirror surface area.The results show that the optimized heliostat mirror field significantly increases the annual average output thermal power per unit mirror area under the condition of achieving the rated power,which provides theoretical basis and technical support for the design and operation of the tower solar thermal power plant.展开更多
In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for ...In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.展开更多
A new framework for free-form surface design is proposed. Using manifolds can generalize the spline scheme to surfaces of arbitrary topology. Physics-based modeling incorporate physical laws into shape representation ...A new framework for free-form surface design is proposed. Using manifolds can generalize the spline scheme to surfaces of arbitrary topology. Physics-based modeling incorporate physical laws into shape representation to provide direct shape interaction. The combination presents a new method inherits the attractive properties of the manifold surface as well as that of the physics-based models.展开更多
Irregular fine protrusions formed on the surface of a mechanical part through biomimetic technology can enhance the part’s properties,including tribology,self-cleaning,and light absorption.However,underlying principl...Irregular fine protrusions formed on the surface of a mechanical part through biomimetic technology can enhance the part’s properties,including tribology,self-cleaning,and light absorption.However,underlying principles for the formation of fine protrusions according to the requirements of their shapes,sizes,and material distributions have not been studied sufficiently.This paper presents the software development for modeling irregular fine protrusions,which is essential for the simulation,experimentation,and analysis of fine protrusions formed by sputter etching.展开更多
This paper deals with the problem of recreating horizontal alignments of existing railway lines.The main objective is to propose a simple method for automatically obtaining optimized recreated alignments located as cl...This paper deals with the problem of recreating horizontal alignments of existing railway lines.The main objective is to propose a simple method for automatically obtaining optimized recreated alignments located as close as possible to an existing one.Based on a previously defined geometric model,two different constrained optimization problems are formulated.The first problem uses only the information provided by a set of points representing the track centerline while the second one also considers additional data about the existing alignment.The proposed methodology consists of a two-stage process in which both problems are solved consecutively using numerical techniques.The main results obtained applying this methodology are presented to show its performance and to prove its practical usefulness:an academic example used to compare with other methods,and a case study of a railway section located in Parga(Spain)in which the geometry of its horizontal alignment is successfully recovered.展开更多
A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segme...A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.展开更多
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned du...A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge- driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the process of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.展开更多
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-...The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.展开更多
Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification fo...Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test resuhs are given.展开更多
A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to pr...A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results showthat the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition,the viscosity of Bi-Sn-In systems was also predicted with this model.展开更多
基金Supported by Natural Science Foundation of Beijing City (4081001)National Agriculture Science and Technology Transformation FundProject (2009GB2A000001)~~
文摘[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
文摘Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.
基金supported by the Project of the Ministry of Science and Technology High-end Foreign Experts of China(No.G2023014042L)the China Scholarship Council(No.201906370013)the Portuguese Foundation for Science and Technology(UIDB/04625/2020).
文摘Segregation results in worse mechanical and durability performance of concrete.Therefore,an accurate modelling of segregation is required for reliable mesoscale modelling.In this context,this paper presents a method to develop the geometric mesoscale modelling of concrete taking into account segregation.In this method,coarse aggregate particles are generated as ellipsoids of random geometry and are randomly placed within concrete.The specimen is stratified in different numbers of layers(NoL)that represent different segregation conditions.The geometric models of four concrete mix designs are generated and the relevant key parameters,e.g.aggregate distribution are analysed and validated.In addition,the segregation level of generated models is classified based on the volumetric index and the correspondence between segregation level and the value of NoL is presented.The results show that 1)The generated geometric models with NoL ranging from 1 to 10 align well with real segregation in concrete and can accurately represent the majority of segregation cases resulting from various experimental factors;2)The NoL reflects the segregation level:more layers indicate a more heterogeneous mesostructure;3)The larger aggregates of the generated models tend to settle at the bottom,while smaller aggregates rise toward the top,leading to uneven vertical distribution,especially as the NoL increases;4)the mix 1 with low aggregate content can represent the construction material with large segregation,while the mix 2 is inverse.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金supported by the National Natural Science Foundation of China(Grant Nos.41625021,41906021,and 41676079)the Program for Scientific Research Start-up Funds of Guangdong Ocean University。
文摘Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the deltaic areas.In this study,we use a conceptual geometric model to evaluate the role played by this factor,on the basis of the principle of mass conservation.The Ganges-Brahmaputra,Mekong and Nile deltas are examined as three typical examples,in terms of their different original seabed morphologies.The control variate method is applied to eliminate the effect of the difference in model input variables.The results show that,assuming a constant sediment load,the delta growth rate will decrease with time;a higher value of the original seabed slope leads to a lower shoreline progradation rate for the subaerial delta and a higher growth rate for the subaqueous delta.Thus,the original seabed morphology represented by slope is a critical factor affecting the evolution of Holocene large-river deltas.These results explain the interrelationships between sediment load,deltaic plain area,and the original seabed slopes for the 27 large-river deltas worldwide,located in the middle/low latitudes,with different tectonic backgrounds.In the future,the conceptual geometric model may be combined with sediment dynamic modeling to identify more details of the evolution of these deltas.
基金This work is supported by the National Natural Science Foundation of China[No.41374151]the Sichuan Province Applied Basic Research Project of China[No.2017JY0162]the Young Scholars Development Fund of SWPU[No.201599010079].
文摘To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of basic pipe components such as straight sections,bends and elbows,and tee joints are discussed and the relevant mathematical formulations for these components are derived.Next,after analyzing the function of MDRM and various element division strategies,the sectional division and blocked division methods are introduced and applied to the appropriate pipeline components to determine the volume and center coordinates of each element,establishing the general models for the three typical pipeline components considered.The resulting volume and center coordinates of each component are the fundamental parameters for determining the MAD forwarding of underground ferromagnetic pipelines using the MDRM.Finally,based on the combination and transformation of the basic pipeline components considered,the visualized geometric models of typical pipeline layouts including parallel pipelines,pipelines with elbows,and a pipeline with a tee joint are constructed.The results demonstrate the feasibility of the proposed method of geometric modeling for the MDRM,which can be further applied to the finite element modeling of these and other components when analyzing MAD data.Furthermore,the models with output parameters proposed in this paper establish a foundation for the inversion of MAD.
基金Project (No. 50576088) supported by the National Natural Science Foundation of China
文摘The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filament curves on the Stratasys 1600 FDM machine, it is indicated that the tractrix model had the best agreement with the actual measured curves. With the analytical simulation, the nozzle trajectories in the straight-line deposition road, circle road, and arbitrary continuous curve road were deduced, according to the traxtric based geometrical model of the filament.
文摘A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金supported in part by the University-Industry Collaborative Education Program under Grant 241006627080140.
文摘In this paper,the optical efficiency and output thermal power of the heliostat mirror field are analyzed and optimized by constructing a geometric model and an optimization algorithm for the optimal design of the heliostat mirror field of a tower-type solar photovoltaic power plant.First,based on the solar position model and the optical efficiency model of the heliostat mirror field,the annual average optical efficiency,the annual average output thermal power,and the annual average output thermal power per unit mirror area of the heliostat mirror field are calculated.Secondly,the EB layout was used to optimize the heliostat field,and the parameters of heliostat size and mounting height were optimized by genetic algorithm and particle swarm algorithm to maximize the annual average output thermal power per unit mirror surface area.The results show that the optimized heliostat mirror field significantly increases the annual average output thermal power per unit mirror area under the condition of achieving the rated power,which provides theoretical basis and technical support for the design and operation of the tower solar thermal power plant.
文摘In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.
基金Funded by the Chinese National Natural Science Foundation (No.50105013).
文摘A new framework for free-form surface design is proposed. Using manifolds can generalize the spline scheme to surfaces of arbitrary topology. Physics-based modeling incorporate physical laws into shape representation to provide direct shape interaction. The combination presents a new method inherits the attractive properties of the manifold surface as well as that of the physics-based models.
文摘Irregular fine protrusions formed on the surface of a mechanical part through biomimetic technology can enhance the part’s properties,including tribology,self-cleaning,and light absorption.However,underlying principles for the formation of fine protrusions according to the requirements of their shapes,sizes,and material distributions have not been studied sufficiently.This paper presents the software development for modeling irregular fine protrusions,which is essential for the simulation,experimentation,and analysis of fine protrusions formed by sputter etching.
基金founded by project TED2021129324B-I00 of the Ministerio de Ciencia e Innovación(Spain)and NextGenerationEU(European Union)the Collaboration Agreement between Consellería de Educación,Formación Profesional e Universidades(Xunta de Galicia,Spain)and Universidade de Santiago de Compostela(Spain)which regulates the Specialization Campus Campus Terra under Grant number 2022-PU014support given by Xunta de Galicia(Spain)by means of the research projects 2023 GPC GI-2084 ED431B2023/17 and GRC GI-1563-ED431C 2021/15,respectively.
文摘This paper deals with the problem of recreating horizontal alignments of existing railway lines.The main objective is to propose a simple method for automatically obtaining optimized recreated alignments located as close as possible to an existing one.Based on a previously defined geometric model,two different constrained optimization problems are formulated.The first problem uses only the information provided by a set of points representing the track centerline while the second one also considers additional data about the existing alignment.The proposed methodology consists of a two-stage process in which both problems are solved consecutively using numerical techniques.The main results obtained applying this methodology are presented to show its performance and to prove its practical usefulness:an academic example used to compare with other methods,and a case study of a railway section located in Parga(Spain)in which the geometry of its horizontal alignment is successfully recovered.
基金This project is supported by General Electric Company and National Advanced Technology Project of China(No.863-511-942-018).
文摘A novel method to extract conic blending feature in reverse engineering is presented. Different from the methods to recover constant and variable radius blends from unorganized points, it contains not only novel segmentation and feature recognition techniques, but also bias corrected technique to capture more reliable distribution of feature parameters along the spine curve. The segmentation depending on point classification separates the points in the conic blend region from the input point cloud. The available feature parameters of the cross-sectional curves are extracted with the processes of slicing point clouds with planes, conic curve fitting, and parameters estimation and compensation, The extracted parameters and its distribution laws are refined according to statistic theory such as regression analysis and hypothesis test. The proposed method can accurately capture the original design intentions and conveniently guide the reverse modeling process. Application examples are presented to verify the high precision and stability of the proposed method.
基金supported by the National Natural Science Foundation (No.51075021)
文摘A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge- driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the process of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.
基金Supported by Major National Basic Research Program of China(973Program,Grant No.2011CB013400-05)PhD Programs Foundation of Ministry of Education of China(Grant No.20110191110005)
文摘The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
基金Project supported by the National Natural Science Foundation of China (Nos. 60273057 and 60403049) and the National Basic Re-search Program (973) of China (No. 2002CB312106)
文摘Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test resuhs are given.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 59674028 and 20101006).
文摘A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results showthat the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition,the viscosity of Bi-Sn-In systems was also predicted with this model.