期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Advances in peridynamics modeling of deformation and fracturing of brittle geomaterials 被引量:2
1
作者 Feng Tian Zaobao Liu +3 位作者 Hongbo Li Enda Zhang Jinxin Zhou Jian-fu Shao 《Deep Resources Engineering》 2024年第3期57-81,共25页
Peridynamics(PD)is an emerging method that establishes a theoretical framework based on non-local theory to describe material mechanical behavior with spatial integral equations.It gives a unified expression of the me... Peridynamics(PD)is an emerging method that establishes a theoretical framework based on non-local theory to describe material mechanical behavior with spatial integral equations.It gives a unified expression of the me-dium including state transformation and characterization in different scales.It is showing great potential for evaluating the complicated mechanical behaviors of brittle solids.In the past two decades,peridynamics has been showing its great potential and advantages in modeling crackings of brittle materials although there are many challenges.The present paper summarizes firstly the theoretical framework and advantages of peridy-namics for modeling fracturing.It introduces then the theoretical improvements to address challenges of peri-dynamics in modeling brittle solid crackings including the release of Poisson ratio limit,different fracture criteria,contact-friction models,coupled constitutive models,and computing accuracy.Afterward,the extension of peridynamics is introduced to the coupled modeling with the other methods such as finite element method,phase field method,and particle-like method before its applications in static and dynamic cracking as well as those under impacts.Meanwhile,some contents that require further exploration are briefly summarized.Finally,the blind spots and future development of peridynamics are analyzed and discussed for the deformation and fracturing modeling of brittle geomaterials. 展开更多
关键词 PERIDYNAMICS Non-local theory Discontinuous problem Brittle geomaterials Numerical simulation
在线阅读 下载PDF
A new thermomechanical coupled FDEM model for geomaterials considering continuum-discontinuum transitions
2
作者 Zihan Liu Louis Ngai Yuen Wong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4654-4668,共15页
A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials... A new thermomechanical(TM)coupled finite-discrete element method(FDEM)model,incorporating heat conduction,thermal cracking,and contact heat transfer,has been proposed for both continuous and discontinuous geomaterials.This model incorporates a heat conduction model that can accurately calculate the thermal field in continuousediscontinuous transition processes within a finite element framework.A modified contact heat transfer model is also included,which accounts for the entire contact area of discrete bodies.To align with the finite strain theory utilized in the FDEM mechanics module,the TM coupling module in the model is based on the multiplicative decomposition of the deformation gradient.The proposed model has been applied to various scenarios,including heat conduction in both continuous and discontinuous media during transient states,thermal-induced strain and stress,and thermal cracking conditions.The thermal field calculation model and the TM coupling model have been validated by comparing the numerical results with experiment findings and analytical solutions.These numerical cases demonstrate the reliability of the proposed model convincingly,making it suitable for use across a wide range of continuous and discontinuous media. 展开更多
关键词 Finite-discrete element method(FDEM) Thermomechanical(TM)coupling Thermal cracking Contact heat transfer geomaterialS
在线阅读 下载PDF
Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials 被引量:10
3
作者 Cunbao Li Dongchao Yang +2 位作者 Heping Xie Li Ren Jun Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期201-213,共13页
Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture t... Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture toughness, effective fracture energy and fracture process zone(FPZ) size of geomaterials were first analyzed by systematic size effect fracture experiments. The results showed that the nominal strength and the apparent fracture toughness decreased with increasing bedding plane inclination angle.The larger the specimen size was, the smaller the nominal strength and the larger the apparent fracture toughness was. When the bedding inclination angle increased from 0° to 90°, the effective fracture energy and the effective FPZ size both first decreased and then increased within two complex variation stages that were bounded by the 45° bedding angle. Regardless of the inherent anisotropy of geomaterials,the nominal strength and apparent fracture toughness can be predicted by the energy-based size effect law, which demonstrates that geomaterials have obvious quasi-brittle characteristics. Theoretical analysis indicated that the true fracture toughness and energy dissipation can be calculated by linear elastic fracture mechanics only when the brittleness number is higher than 10;otherwise, size effect tests should be adopted to determine the fracture parameters. 展开更多
关键词 Size effect Inherent anisotropy Fracture toughness Fracture energy Effective FPZ size Quasi-brittle geomaterials
在线阅读 下载PDF
Basic characteristics and development of yield criteria for geomaterials 被引量:7
4
作者 Maohong Yu Gulyun Xia Vladimir A Kolupaev 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期71-88,共18页
The yield criteria of geomaterials play a crucial role in studying and designing the strength of materials and structures.The basic characteristics of yield criteria for geomaterials need to be studied under the frame... The yield criteria of geomaterials play a crucial role in studying and designing the strength of materials and structures.The basic characteristics of yield criteria for geomaterials need to be studied under the framework of continuum mechanics.These characteristics include the effects of strength difference(SD) of materials in tension and compression,normal stress,intermediate principal stress,intermediate principal shear stress,hydrostatic stress,twin-shear stresses,and the convexity of yield surface.Most of the proposed yield criteria possess only one or some of these basic characteristics.For example,the Tresca yield criterion considers only single-shear stress effect,and ignores the effect of SD,normal stress,intermediate principal stress,intermediate principal shear stress,hydrostatic stress,and twin-shear stresses.The Mohr-Coulomb yield criterion accounts for the effect of SD,normal stress,single-shear stress and hydrostatic stress,but disregards the effect of intermediate principal stress,intermediate principal shear stress,and twin-shear stresses.The basic characteristics remain to be fully addressed in the development of yield criterion.In this paper,we propose a new yield criterion with three features,that is,newly developed,better than existing criteria and ready for application.It is shown that the proposed criterion performs better than the existing ones and is ready for application.The development of mechanical models for various yield criteria and the applications of the unified strength theory to engineering are also summarized.According to a new tetragonal mechanical model,a tension-cut condition is added to the unified strength theory.The unified strength theory is extended to the tension-tension region. 展开更多
关键词 yield criteria failure criteria unified strength theory tension cut-off orthogonal octahedral element geomaterial beauty of a strength theory
在线阅读 下载PDF
A THERMO-PLASTIC/VISCOPLASTIC DAMAGE MODEL FOR GEOMATERIALS 被引量:6
5
作者 Hui Zhou Dawei Hu +1 位作者 Fan Zhang Jianfu Shao 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第3期195-208,共14页
A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneo... A thermo-plastic/viscoplastic damage coupled model was formulated to describe the time independent and time dependent behaviors of geomaterials under temperature effect. The plastic strain was divided into instantaneous plastic strain and creep plastic strain. To take temperature effect into acconnt, a temperature variable was introduced into the instantaneous and creep plastic behavior descriptions and damage characterization, and a linear thermal expansion law was used in constitutive equation formulation. According to the mechanical behavior of rock salt, a specific model was proposed based on the previous model and applied to Avery rock salt, in which the numerical results obtained from our model had a good agreement with the data from experiments. 展开更多
关键词 thermo-plastic/viscoplastic damage coupled mechanical model geomaterial ROCKSALT
原文传递
CONSTITUTIVE THEORY OF PLASTICITY COUPLED WITH ORTHOTROPIC DAMAGE FOR GEOMATERIALS 被引量:1
6
作者 沈新普 泽农·慕容子 徐秉业 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第9期1028-1034,共7页
Constitutive theory of plasticity coupled with orthotropic damage for geomaterials was established in the framework of irreversible thermodynamics. Prime results include I evolution laws are presented for coupled evol... Constitutive theory of plasticity coupled with orthotropic damage for geomaterials was established in the framework of irreversible thermodynamics. Prime results include I evolution laws are presented for coupled evolution of plasticity and orthotropic damage 2) the orthotropic damage tensor is introduced into the Mohr-Coulomb criterion through homogenization. Both the degradation of shear strength and degradation of friction angle caused by damage are included in this model. The dilatancy is calculated with the so-called damage strain. 展开更多
关键词 DAMAGE PLASTICITY coupling DILATANCY geomaterial
在线阅读 下载PDF
Large deformation simulations of geomaterials using moving particle semi-implicit method 被引量:1
7
作者 Shintaro Nohara Hiroshi Suenaga Kunihiko Nakamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1122-1132,共11页
Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g... Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials. 展开更多
关键词 Particle method Moving particle semi-implicit(MPS) method Large deformation analysis geomaterialS Bingham model
在线阅读 下载PDF
Some micromechanical models of elastoplastic behaviors of porous geomaterials
8
作者 W.Q. Shen J.F. Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期1-17,共17页
Some micromechanics-based constitutive models are presented in this study for porous geomaterials.These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic... Some micromechanics-based constitutive models are presented in this study for porous geomaterials.These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix(von Mises, Green type, Misese Schleicher and Druckere Prager). Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Druckere Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials(sandstone,porous chalk and argillite). Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones. 展开更多
关键词 HOMOGENIZATION Porous geomaterials Ductile behavior Double porosity Macroscopic strength Plastic compressibility Druckere Prager solids
在线阅读 下载PDF
A study of the energy yield criterion of geomaterials
9
作者 Gao Hong Zheng Yingren +1 位作者 Feng Xiating Zeng Jing 《Engineering Sciences》 EI 2010年第3期12-20,40,共10页
The study results of the internal friction character of geomaterials conclude that the internal friction exists in mechanical elements all the time having a direction opposite to the shear stress,and the deformation f... The study results of the internal friction character of geomaterials conclude that the internal friction exists in mechanical elements all the time having a direction opposite to the shear stress,and the deformation failure mechanism of geomaterials greatly differs from that of metals. For metals,the failure results from shear stresses make the crystal structure slip; whereas for geomaterials,owing to its attribute of granular structures,their deformation follows the friction law,it is the co-action of shear stresses and perpendicular stresses that makes grains overcome the frictions between them,thus leading to the final failure of relative sliding.Therefore,on the basis of the cognition above,a triple shear energy criterion is proposed. Its corresponding Drucker-Prager criterion for geomaterials is also given. The new criterion can be rewritten to the Mohr-Coulomb criterion by neglecting the effect of the intermediate principal stress,and to the Mises criterion by not taking the internal friction angle into consideration. Then the studies of yield criteria commonly used are conducted systematically from the points of stress,strain and energy of geomaterials. The results show that no matter which expression form of stress,strain or energy is used for the yield criterion,the essence is the same and the triple shear energy yield criterion is the unified criterion of materials. Finally,the experimental verification is conducted in connection with the practical application of the triple shear energy yield criterion in an engineering project,and the calculation result shows that the Mohr-Coulomb criterion which only takes the single shear surface into account is more conservative than the energy criterion that does consider the effect of triple shear surfaces. 展开更多
关键词 energy yield criterion single shear triple shear geomaterial
在线阅读 下载PDF
Constitutive modeling for mechanical behaviors of geomaterials, newdesigns and techniques in geotechnical engineering
10
作者 Chandrakant S.Desai Yang Xiao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第3期275-276,共2页
This Special Issue of the Journal of Rock Mechanics and GeotechnicalEngineering (JRMGE) contains 13 papers prepared by internationalexperts on various general topics in geomechanics, rockmechanics and geotechnical e... This Special Issue of the Journal of Rock Mechanics and GeotechnicalEngineering (JRMGE) contains 13 papers prepared by internationalexperts on various general topics in geomechanics, rockmechanics and geotechnical engineering. It represents a usefulmix of theoretical developments, testing and practical applications.We present in the following brief details in the papers, alphabeticallyin accordance with the last name of the first author.Barla presents a review of tunneling techniques with emphasison the full-face method combining full-face excavation and facereinforcement by means of fiber-glass elements with a yieldcontrolsupport. This method has been used successfully in difficultgeologic conditions, and for a wide spectrum of ground situations.The validation of the method with respect to the Saint Martin LaPorte access adit along the LyoneTurin Base tunnel experiencingseverely squeezing conditions during excavation is also includedin the paper. The numerical modeling with consideration of therock mass time-dependent behavior showed a satisfactory agreementwith monitoring results. 展开更多
关键词 Constitutive modeling for mechanical behaviors of geomaterials new designs and techniques in geotechnical engineering
在线阅读 下载PDF
Describing failure in geomaterials using second-order work approach
11
作者 Franois Nicot Félix Darve 《Water Science and Engineering》 EI CAS CSCD 2015年第2期89-95,共7页
Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusin... Geomaterials are known to be non-associated materials. Granular soils therefore exhibit a variety of failure modes, with diffuse or localized kinematical patterns. In fact, the notion of failure itself can be confusing with regard to granular soils, because it is not associated with an obvious phenomenology. In this study, we built a proper framework, using the second-order work theory, to describe some failure modes in geomaterials based on energy conservation. The occurrence of failure is defined by an abrupt increase in kinetic energy. The increase in kinetic energy from an equilibrium state, under incremental loading, is shown to be equal to the difference between the external second-order work,involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material. When a stress limit state is reached, a certain stress component passes through a maximum value and then may decrease. Under such a condition, if a certain additional external loading is applied, the system fails, sharply increasing the strain rate. The internal stress is no longer able to balance the external stress, leading to a dynamic response of the specimen. As an illustration, the theoretical framework was applied to the well-known undrained triaxial test for loose soils. The influence of the loading control mode was clearly highlighted. It is shown that the plastic limit theory appears to be a particular case of this more general second-order work theory. When the plastic limit condition is met, the internal second-order work is nil. A class of incremental external loadings causes the kinetic energy to increase dramatically, leading to the sudden collapse of the specimen, as observed in laboratory. 展开更多
关键词 Failure in geomaterials Undrained triaxial loading path Second-order work Kinetic energy Plastic limit condition Control parameter
在线阅读 下载PDF
Asbestos,elongated mineral particles and other hazardous geomaterials:occurrence,use and health implications
12
作者 Rosalda Punturo Andrea Bloise +1 位作者 Dolores Pereira Carmela Vaccaro 《Episodes》 2020年第3期849-850,共2页
This special issue entitled“Asbestos,Elongated mineral particles and hazardous geomaterials:occurrence,use and health implications”presents the results obtained by several research groups on anthropogenic and Natura... This special issue entitled“Asbestos,Elongated mineral particles and hazardous geomaterials:occurrence,use and health implications”presents the results obtained by several research groups on anthropogenic and Natural Occurrences of Asbestos and asbestiform minerals(NOA)as sources of possible environmental risks to public health.In particular,this issue shows the state-of-the-art research findings on asbestos-bearing rocks and soils from natural outcrops and asbestoscontaining products such as dimension stones,mortar,concrete and asphalt,bringing out their potential to release airborne mineral fibres into the environment due to human activities.Case studies from various environments and contexts are described,reporting novel and classical approaches for asbestos outcrop mapping and monitoring,also highlighting the risks related to cultural heritage restoration works and waste management. 展开更多
关键词 asbestiform minerals noa OCCURRENCE mineral particles asbestos elongated mineral particles USE dimension stones hazardous geomaterials
在线阅读 下载PDF
Application of machine learning technique for dynamic analysis of confined geomaterial subjected to vibratory load
13
作者 Ammu Boban Preeti Pateriya +2 位作者 Yakshansh Kumar Kshitij Gaur Ashutosh Trivedi 《AI in Civil Engineering》 2024年第1期397-411,共15页
Computer programming-based numerical programs are firmly established in geotechnical engineering,with rapid growth of finite element modeling and machine learning techniques gaining much attention both in practice and... Computer programming-based numerical programs are firmly established in geotechnical engineering,with rapid growth of finite element modeling and machine learning techniques gaining much attention both in practice and academia.This study is intended to expedite the dissemination of advanced computer applications in terms of finite element simulation and machine learning models by investigating the dynamic response of geomaterials subjected to vibratory loads.Several trial models were built to perform the experimental investigations with a vibratory shaker,signal generator,several accelerometers,a data collection system,and other ancillary devices.The implicit integration techniques in commercialized software were adopted for numerical simulations.After data collection from numerical simulation,models were chosen,trained,and assessed to produce predictions that were then used in this study.Several technologies,including the ensemble boosted tree,squared exponential Gaussian Process Regression(GPR),Matern 5/2 GPR,exponential GPR,and decision tree architectures(fine and medium),were used to forecast the displacement of confined geomaterial.The displacement-depth ratio was found rising to 80%in the frequency range of 5 to 25 Hz,suggesting a considerable change in the behavior of the geomaterial.The Matern 5/2 GPR model showed better accuracy with an R2 value of 0.99,indicating an outstanding predictive ability.The Matern 5/2 GPR and boosted tree models could help better understand the links between displacement and its distribution along the direction of load application.The outcomes of this study based on computer-aided finite element programs can be effectively implemented in machine learning to develop computer programs.In conclusion,the computational machine learning models adopted in this study offer a new insight for uncovering hidden intrinsic laws and creating new knowledge for geotechnical researchers and practitioners. 展开更多
关键词 Machine learning technique Dynamic analysis Confined geomaterial Vibratory load
原文传递
A hydraulic binder for compacted clay under wet-dry cycles:Low carbon limestone calcined clay cement
14
作者 Nauman Ijaz Weimin Ye +4 位作者 Qiong Wang Yonggui Chen Zia ur Rehman Zain Ijaz Usama Khalid 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5970-5988,共19页
High-plastic clays with significant volume change due to moisture variations present critical challenges to civil engineering structures.Limestone calcined clay cement(LC3),an innovative and sustainable hydraulic bind... High-plastic clays with significant volume change due to moisture variations present critical challenges to civil engineering structures.Limestone calcined clay cement(LC3),an innovative and sustainable hydraulic binder,demonstrates significant potential for improving the engineering characteristics of such soils.Nevertheless,the impact of LC3 on the physico-mechanical characteristics of treated soil under a cyclic wet-dry environment remains unclear.This study for the first time investigates LC3's impact on the long-term durability of treated high-plastic clays through comprehensive macro-micro testing including physical,mechanical,mineralogical,and microstructural investigations with an emphasis on wet-dry cycles.The results revealed that LC3 treatment exhibits significant resistance to wet-dry cycles by completely mitigating the swelling potential,and a considerable reduction in plasticity resulting in enhanced workability.The compressibility and shear strength parameters have been significantly improved to several orders of magnitude.However,after six wet-dry cycles,a slight to modest reduction is observed,but overall durability remains superior to untreated soil.Cohesive and structural bonding ratios quantitatively assessed the impact of wet-dry cycles emphasizing the advantage of LC3 treatment.According to mineralogical and microstructural evaluation,the mechanism behind the adverse effects of wet-dry cycles on the compressibility and strength behavior of LC3-treated soil is mainly attributed to:(1)weakening of CSH/C(A)SH and ettringite(AFt)phases by exhibiting lower peak intensities;and(2)larger pore spaces due to repeated wet-dry cycles.These findings highlight LC3's performance in enhancing the long-term behavior and resilience of treated soils in real-world scenarios,providing durable solutions for infrastructure challenges. 展开更多
关键词 Low carbon limestone calcined clay cement (LC3) Sustainable geomaterial Cyclic wet-dry environment Bonding ratio Durability Mineralogical-microstructural behavior
在线阅读 下载PDF
Triaxial compression test of MICP sand column and simulation of failure process
15
作者 Siriguleng Bai Kai Li +1 位作者 Tala Bao Chi Li 《Biogeotechnics》 2025年第3期76-82,共7页
Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regu... Microbially induced calcium carbonate precipitation(MICP)technology can induce calcium carbonate crystals with cementation and stable performance in the process of microbial metabolism or enzymization through the regulation of environmental factors MICP can be used as a cementing agent to cement cohesionless sand particles to form the materials with the characteristics of higher strength,better durability and environmental friendli-ness,as well as a good engineering application prospect.In this paper,the shear strength of sand column was tested by triaxial compression tests,and the strength index was obtained.In order to further study the micro-strength mechanism and the failure process,based on the discrete element method,a numerical model of MICP cemented sand column was established considering the factors of matrix soil particle gradation,particle mor-phology,content ratio of induced calcium carbonate,pore distribution characteristics,inter-particle cementation and so on.The failure process of MICP cemented sand column under load was analysed by numerical simulation,and the reliability of the numerical model was tested by combining with the stress intensity curve of samples under test conditions.The results indicate that compared with the actual triaxial tests of MICP cemented sand column,although there are deviations in stress and strain,cohesion and internal friction angle,the numerical simulation shows similar development law and intensity amplitude,and the same failure trend.The work in this paper verifies the reliability of the numerical model and provides a theoretical basis for the subsequent analysis of the factors influencing the geotechnical mechanical properties of biomineralized materials. 展开更多
关键词 Biotreated geomaterial Microbially induced calcite precipitation Triaxial compression Consolidated sand Particle Flow Code(PFC)simulation Failure mechanism
在线阅读 下载PDF
Adsorption of Arsenic by Laterite, Sandstone and Shale in a Fixed-Bed Column
16
作者 N’Da Akoua Alice Koua-Koffi Sandotin Lassina Coulibaly +1 位作者 Petemanagnan Jean-Marie Ouattara Lacina Coulibaly 《Journal of Materials Science and Chemical Engineering》 2025年第1期45-60,共16页
The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, colum... The removal of arsenic from water is essential for the protection of public health. To investigate the adsorption capabilities of laterite, sandstone, and shale for the removal of arsenic from aqueous solutions, column experiments were conducted. In this study, raw materials and heat-treated (calcined) materials were examined. The experiments assessed the influence of various parameters, including initial concentration, bed depth, and the effects of heat treatment. The findings revealed that the breakthrough curves were influenced by the initial concentration of arsenic, the depth of the bed, and the type of material used. For an initial arsenic concentration of 5 mg/L, columns containing 85 cm of calcined laterite, sandstone, and shale produced volumes of 7460 ml (1492 min), 3510 ml (702 min), and 4400 ml (880 min) of water with arsenic levels below 0.01 mg/L, respectively. These calcined materials demonstrate significant potential for the effective removal of arsenic from water. 展开更多
关键词 geomaterialS ADSORPTION ARSENIC Water
在线阅读 下载PDF
Rock cracking simulation in tension and compression by peridynamics using a novel contact-friction model with a twin mesh and potential functions
17
作者 Feng Tian Zaobao Liu +1 位作者 Jinxin Zhou Jianfu Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3395-3419,共25页
Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterial... Peridynamics(PD)is an effective method for simulating the spontaneous initiation and propagation of tensile cracks in materials.However,it faces great challenges in simulating compression-shear cracking of geomaterials due to the lack of efficient contact-friction models.This paper introduces an original contact-friction model that leverages twin mesh and potential function principles within PD to model rock cracking under tensile and compressive stresses.The contact detection algorithm,based on space segmentation axis-aligned bounding box(AABB)tree data structure,is used to address the significant challenge of highly efficient contact detection in compression and shear problems.In this method,the twin mesh and potential function are utilized to quantify contact detection and contact degree,as well as friction behavior.This is in contrast to the distance and circular contact area model,which lacks physical significance in the classical PD method.As demonstrated by the tests on specimens containing cracks,the proposed model can capture 8 types of secondary fractures,reduce the contact detection error by about 29%e56%,and increase the contact retrieval efficiency by over 1600 times compared to the classic PD models.This significantly enhances the capability of PD to simulate the initiation,expansion,and coalescence of intricate compression-shear cracks. 展开更多
关键词 Peridynamics(PD) Rock cracking modeling Compression-shear modeling Cracking modeling of geomaterials Contact detection algorithm Contact-friction model
在线阅读 下载PDF
Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial 被引量:4
18
作者 Chi LI Siriguleng BAI +5 位作者 Tuanjie ZHOU Hanlong LIU Xiao QIN Shihui LIU Xiaoying LIU Yang XIAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第3期599-608,共10页
Microbially induced calcite precipitation(MICP)is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials.New artificial biotreated... Microbially induced calcite precipitation(MICP)is a recently proposed method that is environmentally friendly and has considerable potential applications in artificial biotreated geomaterials.New artificial biotreated geomaterials are produced based on the MICP technology for different parent soils.The purpose of this study is to explore the strength-increase mechanism and microstmctural characteristics of the biotreated geomaterial through a series of experiments.The results show that longer mineralization time results in higher-strength biotreated geomaterial.The strength growth rate rapidly increases in the beginning and remains stable afterwards.The calcium ion content significantly increases with the extended mineralization time.When standard sand was used as a parent soil,the calcium ion content increased to a factor of 39 after 7 days.The bacterial cells with attached calcium ions serve as the nucleus of crystallization and fill the pore space.When fine sand was used as a parent soil,the calcium ion content increased to only a factor of 7 after 7 days of mineralization.The nucleus of crystallization could not normally grow because of the limited pore space.The porosity and variation in porosity are clearly affected by the parent soil.Therefore,the strength of the biotreated geomaterial is affected by the parent soil properties,mineralization time,and granular material pore space.This paper provides a basis for theory and experiments for biotreated geomaterials in future engineering practice. 展开更多
关键词 biotreated geomaterial microbially induced calcite precipitation strength-increase mechanism microstructural characteristics
原文传递
Several basic problems in plastic theory of geomaterials
19
作者 Yuanxue LIU Jiawu ZHOU +2 位作者 Zhongyou LI Chen CHEN Yingren ZHENG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第1期81-84,共4页
Based on the basic mechanical properties of geomaterials,it was proven that the Drucker Postulate and the classical theory of plasticity can not be applied to geomaterials.Moreover,several basic problems of plastic th... Based on the basic mechanical properties of geomaterials,it was proven that the Drucker Postulate and the classical theory of plasticity can not be applied to geomaterials.Moreover,several basic problems of plastic theory of geomaterials were discussed.Based on the strict theoretical analysis,the following have been proven:the single yield surface model based on the classical theory of plasticity is unsuitable for geomaterials whether the rule of associated flow is applied or not;the yield surface of geomaterials is not unique,and its number is the same as the freedoms of plastic strain increment;the yield surface is not convex;and the rule of associated flow is unsuitable for geomaterials. 展开更多
关键词 constitutive relation geomaterialS classial plastic theory Drucker Postulate yield surface flow rule
原文传递
A thermodynamics-based three-scale constitutive model for partially saturated granular materials 被引量:2
20
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material geomaterialS Multi-scale constitutive model Water retention curve PLASTICITY
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部