Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic...The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.展开更多
The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on ...The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.展开更多
The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,the...The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..展开更多
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn...This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.展开更多
Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the f...Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.展开更多
Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) v...Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) volume mixing ratios(VMRs)increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50%weakening of the geomagnetic field.Statistically significant changes in CO_(2) are mainly found above~90 km altitude and primarily redetermine the energy budget at~100-110 km.Our analysis of transformed Eulerian mean(TEM)circulation found that CO_(2) change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating.We further analyzed the atmospheric CO_(2) response to realistic geomagnetic weakening between 1978 and 2013,and found increasing(decreasing)CO_(2) VMRs at high latitudes(mid and low latitudes)accordingly.For the first time,our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO_(2) distribution is noticeable on a time scale of decades.展开更多
Based on the geomagnetic data at 135 stations and 35 observatories in China in 2003, the Taylor polynomial model and the spherical cap harmonic model in China and its adjacent area for 2003 were established. In the mo...Based on the geomagnetic data at 135 stations and 35 observatories in China in 2003, the Taylor polynomial model and the spherical cap harmonic model in China and its adjacent area for 2003 were established. In the model calculation, the truncation order of the model and the influences of the boundary restriction on the model calculation were carefully analyzed. The results show that the geomagnetic data used are precise and reliable, and the selection of the truncation order is reasonable. The Taylor polynomial model and the spherical cap harmonic model in China and its adjacent area established in this paper are consistent very well.展开更多
We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China....We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China. On the basis of grid data, inversion was conducted and magnetic field distribution and magnetic structure on bedding of different depths were obtained. The new results show that: 1. The magnetic field characteristics are largely different in horizontal and vertical directions and they can be divided into zones according to the continental blocks of Yangtze, Cathaysia, Kangdian (Sichuan-Yunnan) and Qinling-Dabie. 2. The Tanlu fault extends southward along the Ganjiang fault and the Wuchuan-Sihui fault after it crossed over the Yangtze River and was offset locally in the east-west direction. The Tanlu fault finally slips into the South China Sea at Hainan Island. 3. The boundary between Yangtze and Cathaysia blocks starts from Hangzhou Bay in the east, extends along Jiangshao fault and passes through Nanchang, Changsha, and Guilin, and finally enters the sea at Qinzhou, Guangxi. 4. The distribution of buried structure zone is located at 24.5°-26° N.展开更多
We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the p...We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.展开更多
Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic f...Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic field.The presence of model errors in the geomagnetic data assimilation is inevitable because current numerical geodynamo models are still far from realistic core dynamics.In this paper,we investigate the effect of model errors in geomagnetic data assimilation based on ensemble Kalman filter(EnKF).We construct two dynamo models with different control parameters but exhibiting similar force balance and magnetic morphology at the core surface.We then use one dynamo model to generate synthetic observations and the other as the forward model in EnKF.Our test experiments show that the EnKF approach with the pre-setting model errors can nevertheless recover large-scale core surface flow and make a rough short-term(5-year)prediction.However,the data assimilation in the presence of model errors cannot keep improving the core state even though new observations are available.Motivated by the planned Macao Science Satellite-1,which is expected to provide improved internal geomagnetic field model,we also perform a test experiment using synthetic observations up to spherical harmonic degree l=18.Our results indicate that high-resolution observations are crucial in reconstructing small scale flow.展开更多
The number of good quality paleomagnetic data of the Mesoproterozoic supercontinent Nuna(e.g.Columbia,Hudsonland)has increased in recent years enabling more reliable global continental reconstructions(e.g Hoffman
In the current state of geomagnetic instrument testing,some aspects of geomagnetic instrument performance are difficult to test in the laboratory.If laboratory test results are inadequate,the instrument will have mult...In the current state of geomagnetic instrument testing,some aspects of geomagnetic instrument performance are difficult to test in the laboratory.If laboratory test results are inadequate,the instrument will have multiple problems while operating in the field,where a geomagnetic instrumentation test platform with a stable natural magnetic field is critical.Here,the magnetic field feedback circuit for geomagnetic field compensation control is studied in detail.That is,the magnetic field measured by the feedback magnetic sensor and the required working magnetic field are compared as input to the system,and the electric signal is transmitted to the feedback coil through an analog circuit to form a closed loop control,which provides compensation to control the magnetic field.Compared with the existing magnetic shielding method,the analog control circuit can achieve the realization of any working magnetic field,and it is not limited to a null magnetic field.The experimental result shows that the system compensates the earth’s magnetic field of 10,000 nT with an average error of 10.6 nT and average compensation error of 0.106%,providing a high compensation accuracy.The system also shows high sensitivity and excellent stability.The feedback circuit has achieved effective compensation control for the earth’s magnetic field.展开更多
In this paper a solution to the problem of the self-generated magnetic field of the Earth is pro-posed. The solution is based on the existence of a steady-state current distribution localized in some region inside the...In this paper a solution to the problem of the self-generated magnetic field of the Earth is pro-posed. The solution is based on the existence of a steady-state current distribution localized in some region inside the convective zone of the planet, constituted by the fluid Outer Core. The magnitude of the self-generated magnetic field is obtained and it is shown to be a dipolar field.展开更多
The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to meas...The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.展开更多
Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates v...Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.展开更多
Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed d...Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.展开更多
The Low Earth Orbit(LEO)geomagnetic satellites provide a large number of high-precision measurements,which are crucial for researching the Secular Variation(SV)of the geomagnetic field.We employ the combined constella...The Low Earth Orbit(LEO)geomagnetic satellites provide a large number of high-precision measurements,which are crucial for researching the Secular Variation(SV)of the geomagnetic field.We employ the combined constellation data from the Chinese Seismo-Electromagnet Satellite(CSES)and Swarm satellites to extract the SV in China and surrounding areas,based on the Geomagnetic Virtual Observatory(GVO)method.On this basis,we have developed two GVO products:the core field,and the SV series.The accuracies of these products are assessed using ground observatories measurements and geomagnetic field model.Moreover,the results indicate that the GVO products align well with the series from ground observatories and the CHAOS model.The majority of root-mean-square deviation(RMSE)values of the core field series are less than 5 nT,consistent with the INTERMAGNET standards for quasi-definitive data.In the GVO core field series,the maximum accuracy of one-month and four-month intervals are 2.24 nT and 1.16 nT,respectively.In the GVO SV series,the maximum accuracy of one-month and four-month intervals are 2.03 nT/yr and 1.36 nT/yr,respectively.The GVO SV series effectively capture geomagnetic jerks without losing temporal resolution comparing with the recording of ground observatories.We demonstrate that the GVO method serves as an effective and precise tool for extracting SV information of geomagnetic fields.In the GVO products,the RMSE of the horizontal component exceeds that of the vertical component,and the magnitude of RMSE deviation correlates with solar activity levels.With more and more geomagnetic satellites in orbit,we wish to use multi-constellation magnetic satellite data to assess the geomagnetic field more accurately.展开更多
The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can...The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can trigger stress-like responses such as reduced body weight,as we have previously shown in the brown planthopper,Nilaparvata lugens.In this study,we found that consistent with the significantly decreased body weight of newly emerged female(—14.67%)and male(—13.17%)adult N.lugens,the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02%in 5th instar nymphs reared under the NZMF versus GMF.Interestingly,5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels(+16.98%and+20.05%;24 h and 48 h after molting),which are associated with food aversion,and expression patterns of their appetite-related neuropeptide genes(neuropeptide F,dow regulated overall;short neuropeptide F,dowregulated overall;adipokinetic hormone up-regulated overall;and adipokinetic hormone receptor,down-regulated overall)were also altered under the absence of GMF in a manner consistent with diminishing appetite.Moreover,the expressions of the potential magnetosensor croptochromes(Crys)were found significantly altered under the absence of GMF,indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms.These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation.Our results highlight that GMF could be necessary for the maintenanee of energy homeostasis in insects.展开更多
The analysis on the magnetic fabric of profile of the sedimentary core taken in five stations in the small spreading ridge area in Mariana Trough shows that the effect of indicating its depositional fabric, sedimentar...The analysis on the magnetic fabric of profile of the sedimentary core taken in five stations in the small spreading ridge area in Mariana Trough shows that the effect of indicating its depositional fabric, sedimentary rhythm.sedimentary events, sedimentary interfaces and sediment composition as well as sedimentary dynamic environment by magnetic. Parameters is clearer than that by traditional method of analysis. The indication of sedimentary events can show its high resolution. The study on the Late Quaternary sedimentary events in this area shows that this area underwent four big events of sudden change in the Holocene epoch based on the sudden change of underflow direction and the position relationship between ash beds and erosion sediment layers. The sudden change of underflow direction is a believable evidence for judgement and study of sudden event within this area. The direction changes of its geomagnetic field show three morphotypes i. e. relatively stable type and non-stable type of oscillatory amplitude of magnetic inclination (Inc) which existed during the relatively stable period of amplitude of magnetic declination (Dnc). Anothertype is characterized by big amplitude of both inclination and declination.The space-time series of the three type mentioned above is a new way for forming a high-resolution stratigraphical timetable.展开更多
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金supported by the National Natural Science Foundation of China(42250101,42250102)the Macao Foundation.
文摘The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.
基金supported by the National Natural Science Foundation of China(Grant Nos.12250013,12403070,12425306,42250101,12273092)the Macao Foundation,and Shanghai Post-doctoral Excellence Program(Grant No.2023000137)。
文摘The Sq(solar quiet)geomagnetic field is generated by the electric currents in the E-region of the ionosphere,driven by the atmospheric tides.It is a critical part of high-precision geomagnetic field modeling.Based on the classic thermal tide theory and atmospheric electrodynamics,this research,for the first time,developed an Sq geomagnetic field model that is directly built on the physical mechanism of the ionospheric dynamo,which is responsible for daily variations of the geomagnetic field.The performance in Sq geomagnetic field modeling was investigated using the Macao Science Satellite-1(MSS-1)data.Our model can enhance the physics-based framework of comprehensive geomagnetic field modeling for the MSS-1 and ensuing missions.
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C).
文摘The observation of geomagnetic field variations is an important approach to studying earthquake precursors.Since 1987,the China Earthquake Administration has explored this seismomagnetic relationship.In particular,they studied local magnetic field anomalies over the Chinese mainland for earthquake prediction.Owing to the years of research on the seismomagnetic relationship,earthquake prediction experts have concluded that the compressive magnetic effect,tectonic magnetic effect,electric magnetic fluid effect,and other factors contribute to preearthquake magnetic anomalies.However,this involves a small magnitude of magnetic field changes.It is difficult to relate them to the abnormal changes of the extremely large magnetic field in regions with extreme earthquakes owing to the high cost of professional geomagnetic equipment,thereby limiting large-scale deployment.Moreover,it is difficult to obtain strong magnetic field changes before an earthquake.The Tianjin Earthquake Agency has developed low-cost geomagnetic field observation equipment through the Beijing–Tianjin–Hebei geomagnetic equipment test project.The new system was used to test the availability of equipment and determine the findings based on big data..
基金supported by the National Natural Science Foundation of China(1140503561004130+4 种基金60834005)the Natural Science Foundation of Heilongjiang Province of China(F201414)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBHQ15034)the Stable Supporting Fund of Acoustic Science and Technology Laboratory(JCKYS2019604SSJS002)the Fundamental Research Funds for the Central Universities。
文摘This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.
基金supported by Macao Science and Technology Development Fund grant 0001/2019/A1Macao Foundation+1 种基金the preresearch Project on Civil Aerospace Technologies of CNSA(Grants No.D020303 and D020308)the National Natural Science Foundation of China(41904066,42142034)。
文摘Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.
基金This work was supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(41621004,41427901)+2 种基金the Open Research Project of Large Research Infrastructures—“Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project”the Key Research Program of the IGGCAS with Grant No.IGGCAS-201904XZ thanks the UCAS Joint PhD Training Program.The National Center for Atmospheric Research is a major facility sponsored by the National Science Foundation under Cooperative Agreement No.1852977.
文摘Responses of atmospheric carbon dioxide(CO_(2))density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended(WACCM-X).Our ensemble simulations show that CO_(2) volume mixing ratios(VMRs)increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50%weakening of the geomagnetic field.Statistically significant changes in CO_(2) are mainly found above~90 km altitude and primarily redetermine the energy budget at~100-110 km.Our analysis of transformed Eulerian mean(TEM)circulation found that CO_(2) change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating.We further analyzed the atmospheric CO_(2) response to realistic geomagnetic weakening between 1978 and 2013,and found increasing(decreasing)CO_(2) VMRs at high latitudes(mid and low latitudes)accordingly.For the first time,our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO_(2) distribution is noticeable on a time scale of decades.
基金Special Public Welfare Subject (2001DIA10002/2002DIB10043) supported by the Ministry of Sciences and Tech-nlogy of China and Key Project ″Compilation of China Geomagnetic Charts (2005)″ supported by the China Earthquake Administration. Contribution No.06FE3013, Institute of Geophysics, China Earthquake Administration.
文摘Based on the geomagnetic data at 135 stations and 35 observatories in China in 2003, the Taylor polynomial model and the spherical cap harmonic model in China and its adjacent area for 2003 were established. In the model calculation, the truncation order of the model and the influences of the boundary restriction on the model calculation were carefully analyzed. The results show that the geomagnetic data used are precise and reliable, and the selection of the truncation order is reasonable. The Taylor polynomial model and the spherical cap harmonic model in China and its adjacent area established in this paper are consistent very well.
基金jointly supported by China National Natural Science Foundation(Grant No.40074020)by a special fund(Grant No.40242004).
文摘We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China. On the basis of grid data, inversion was conducted and magnetic field distribution and magnetic structure on bedding of different depths were obtained. The new results show that: 1. The magnetic field characteristics are largely different in horizontal and vertical directions and they can be divided into zones according to the continental blocks of Yangtze, Cathaysia, Kangdian (Sichuan-Yunnan) and Qinling-Dabie. 2. The Tanlu fault extends southward along the Ganjiang fault and the Wuchuan-Sihui fault after it crossed over the Yangtze River and was offset locally in the east-west direction. The Tanlu fault finally slips into the South China Sea at Hainan Island. 3. The boundary between Yangtze and Cathaysia blocks starts from Hangzhou Bay in the east, extends along Jiangshao fault and passes through Nanchang, Changsha, and Guilin, and finally enters the sea at Qinzhou, Guangxi. 4. The distribution of buried structure zone is located at 24.5°-26° N.
基金the support of the National Natural Science Foundation of China(Nos.41974073,41404053)the Macao Foundation and the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)+2 种基金funded by the National Space Administration of Chinathe opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao Science and Technology Development Fund No.119/2017/A3)the Specialized Research Fund for State Key Laboratories,and the NUIST-UoR International Research Institute。
文摘We combined domestic ground-based and satellite magnetic measurements to create a regional three-dimensional surface Spline(3DSS)gradient model of the main geomagnetic field over the Chinese continent.To improve the precision of the model,we considered the data gap between the ground and satellite data.We compared and analyzed the results of the Taylor polynomial,surface Spline,and CHAOS-6(the CHAMP,?rsted and SAC-C model of Earth’s magnetic field)gradient models.Results showed that the gradients in the south-north and east-west directions of the four models were consistent.The 3DSS model was able to express not only gradients at different altitudes,but also average gradients inside the research area.The two Spline models were able to capture more information on gradient anomalies than were the fitted models.Strong local anomalies were observed in northern Xinjiang,Beijing,and the junction area between Jiangsu and Zhejiang,and the total intensity F decreased whereas the altitude increased.The gradient decreased by 21.69%in the south-north direction and increased by 11.78%in the east-west direction.In addition,the altitude gradient turned from negative to positive while the altitude increased.The Spline model and the two fitted models differed mainly in the field sources they expressed and the modeling theory.
基金supported by the Macao Foundation and preresearch project on Civil Aerospace Technologies of CNSA(D020308,D020303)the Macao Science and Technology Development Fund(0001/2019/A1)the National Natural Science Foundation of China(41904066,42142034)。
文摘Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic field.The presence of model errors in the geomagnetic data assimilation is inevitable because current numerical geodynamo models are still far from realistic core dynamics.In this paper,we investigate the effect of model errors in geomagnetic data assimilation based on ensemble Kalman filter(EnKF).We construct two dynamo models with different control parameters but exhibiting similar force balance and magnetic morphology at the core surface.We then use one dynamo model to generate synthetic observations and the other as the forward model in EnKF.Our test experiments show that the EnKF approach with the pre-setting model errors can nevertheless recover large-scale core surface flow and make a rough short-term(5-year)prediction.However,the data assimilation in the presence of model errors cannot keep improving the core state even though new observations are available.Motivated by the planned Macao Science Satellite-1,which is expected to provide improved internal geomagnetic field model,we also perform a test experiment using synthetic observations up to spherical harmonic degree l=18.Our results indicate that high-resolution observations are crucial in reconstructing small scale flow.
文摘The number of good quality paleomagnetic data of the Mesoproterozoic supercontinent Nuna(e.g.Columbia,Hudsonland)has increased in recent years enabling more reliable global continental reconstructions(e.g Hoffman
基金National Key Research and Development Program Project(2018YFC1503803)Central-Level Public Welfare Basic Research Business Special(DQJB19B22)
文摘In the current state of geomagnetic instrument testing,some aspects of geomagnetic instrument performance are difficult to test in the laboratory.If laboratory test results are inadequate,the instrument will have multiple problems while operating in the field,where a geomagnetic instrumentation test platform with a stable natural magnetic field is critical.Here,the magnetic field feedback circuit for geomagnetic field compensation control is studied in detail.That is,the magnetic field measured by the feedback magnetic sensor and the required working magnetic field are compared as input to the system,and the electric signal is transmitted to the feedback coil through an analog circuit to form a closed loop control,which provides compensation to control the magnetic field.Compared with the existing magnetic shielding method,the analog control circuit can achieve the realization of any working magnetic field,and it is not limited to a null magnetic field.The experimental result shows that the system compensates the earth’s magnetic field of 10,000 nT with an average error of 10.6 nT and average compensation error of 0.106%,providing a high compensation accuracy.The system also shows high sensitivity and excellent stability.The feedback circuit has achieved effective compensation control for the earth’s magnetic field.
文摘In this paper a solution to the problem of the self-generated magnetic field of the Earth is pro-posed. The solution is based on the existence of a steady-state current distribution localized in some region inside the convective zone of the planet, constituted by the fluid Outer Core. The magnitude of the self-generated magnetic field is obtained and it is shown to be a dipolar field.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503303)the National Natural Science Foundation of China(Nos.12220101003,12275266,12003076,12022503,12103094 and U2031149)+8 种基金Outstanding Youth Science Foundation of NSFC(No.12022503)the Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(No.YSBR-061)the Strategic Priority Program on Space Science of Chinese Academy of Sciences(No.E02212A02S)the Youth Innovation Promotion Association of CAS(No.2021450)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220197)the New Cornerstone Science Foundation through the XPLORER PRIZEthe Program for Innovative Talents and Entrepreneur in Jiangsu.In Europesupported by the Swiss National Science Foundation(SNSF),Switzerland,the National Institute for Nuclear Physics(INFN),Italythe European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(No.851103).
文摘The cosmic-ray(CR)electrons and positrons in space are of considerable significance for studying the origin and propagation of CRs.The satellite-borne detector Dark Matter Particle Explorer(DAMPE)has been used to measure the separate electron and positron spectra,as well as the positron fraction.In this study,the Earth's magnetic field is used to distinguish CR electrons and positrons,as the DAMPE detector does not carry an onboard magnet.The energy for the measurements ranges from 10 to 20 GeV,which is currently limited at high energy by the zenith-pointing orientation of DAMPE.The results are consistent with previous measurements based on the magnetic spectrometer by AMS-02 and PAMELA,whereas the results of Fermi-LAT appear to be systematically shifted to larger values.
基金supported by the National Natural Science Foundation of China(Grant No.42274003)PWL was supported by Swarm DISC(Swarm Data,Innovation,and Science Cluster)+2 种基金funded by the European Space Agency(ESAContract No.4000109587)HFR acknowledges funding from the UK Natural Environment Research Council(Grant No.NE/V010867/1)。
文摘Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.
基金supported by the National Natural Science Foundation of China(Grant No.42388101)the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC00103)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(IGGCAS-202102).
文摘Many planets,including the Earth,possess a global dipolar magnetic field.To diagnose the interior source of the dipolar field,researchers usually adopt a dipole model consisting of six parameters to fit the observed dataset of the magnetic field.However,the simultaneous fitting of these parameters often leads to multiple local optimal parameter sets.To address this fitting dilemma,Rong ZJ et al.(2021)recently developed a current loop model.This technique can successively separate and invert the loop parameters.Here,we further show how this technique can be reduced and modified to fit a dipole model.Applications of this reduced technique to the International Geomagnetic Reference Field model and the Martian crustal field model highlight its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly,a capability that sets it apart from existing methods.The potential impact of this technique on geomagnetism and planetary magnetism is significant,given its unique ability to diagnose both the planetary global dipolar field and the local crustal field anomaly.
基金supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(grant no.DQJB24X25).
文摘The Low Earth Orbit(LEO)geomagnetic satellites provide a large number of high-precision measurements,which are crucial for researching the Secular Variation(SV)of the geomagnetic field.We employ the combined constellation data from the Chinese Seismo-Electromagnet Satellite(CSES)and Swarm satellites to extract the SV in China and surrounding areas,based on the Geomagnetic Virtual Observatory(GVO)method.On this basis,we have developed two GVO products:the core field,and the SV series.The accuracies of these products are assessed using ground observatories measurements and geomagnetic field model.Moreover,the results indicate that the GVO products align well with the series from ground observatories and the CHAOS model.The majority of root-mean-square deviation(RMSE)values of the core field series are less than 5 nT,consistent with the INTERMAGNET standards for quasi-definitive data.In the GVO core field series,the maximum accuracy of one-month and four-month intervals are 2.24 nT and 1.16 nT,respectively.In the GVO SV series,the maximum accuracy of one-month and four-month intervals are 2.03 nT/yr and 1.36 nT/yr,respectively.The GVO SV series effectively capture geomagnetic jerks without losing temporal resolution comparing with the recording of ground observatories.We demonstrate that the GVO method serves as an effective and precise tool for extracting SV information of geomagnetic fields.In the GVO products,the RMSE of the horizontal component exceeds that of the vertical component,and the magnitude of RMSE deviation correlates with solar activity levels.With more and more geomagnetic satellites in orbit,we wish to use multi-constellation magnetic satellite data to assess the geomagnetic field more accurately.
基金the National Natural Science Foundation of China(31701787,31470454 and 31670855)the Natural Science Foundation of Jiangsu Province(BK20160717 and BK20170026)+3 种基金the Fundame ntal Research Funds for the Central Universi-ties(KJQN201820)the Nanjing Agricultural University Start-up Fund(82162045)the Jiangsu Province Postdoctoral Science Foundation(1601196C)the National Basic Research Program of China(973)(2010CB126200).
文摘The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can trigger stress-like responses such as reduced body weight,as we have previously shown in the brown planthopper,Nilaparvata lugens.In this study,we found that consistent with the significantly decreased body weight of newly emerged female(—14.67%)and male(—13.17%)adult N.lugens,the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02%in 5th instar nymphs reared under the NZMF versus GMF.Interestingly,5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels(+16.98%and+20.05%;24 h and 48 h after molting),which are associated with food aversion,and expression patterns of their appetite-related neuropeptide genes(neuropeptide F,dow regulated overall;short neuropeptide F,dowregulated overall;adipokinetic hormone up-regulated overall;and adipokinetic hormone receptor,down-regulated overall)were also altered under the absence of GMF in a manner consistent with diminishing appetite.Moreover,the expressions of the potential magnetosensor croptochromes(Crys)were found significantly altered under the absence of GMF,indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms.These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation.Our results highlight that GMF could be necessary for the maintenanee of energy homeostasis in insects.
文摘The analysis on the magnetic fabric of profile of the sedimentary core taken in five stations in the small spreading ridge area in Mariana Trough shows that the effect of indicating its depositional fabric, sedimentary rhythm.sedimentary events, sedimentary interfaces and sediment composition as well as sedimentary dynamic environment by magnetic. Parameters is clearer than that by traditional method of analysis. The indication of sedimentary events can show its high resolution. The study on the Late Quaternary sedimentary events in this area shows that this area underwent four big events of sudden change in the Holocene epoch based on the sudden change of underflow direction and the position relationship between ash beds and erosion sediment layers. The sudden change of underflow direction is a believable evidence for judgement and study of sudden event within this area. The direction changes of its geomagnetic field show three morphotypes i. e. relatively stable type and non-stable type of oscillatory amplitude of magnetic inclination (Inc) which existed during the relatively stable period of amplitude of magnetic declination (Dnc). Anothertype is characterized by big amplitude of both inclination and declination.The space-time series of the three type mentioned above is a new way for forming a high-resolution stratigraphical timetable.