With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Wei Yong(魏勇)at the Key Laboratory of Earth and Planetary Physics,Institute of Ge...With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Wei Yong(魏勇)at the Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences,proposed that the implantation of Earth’s atmospheric ions into the farside lunar soil could reveal the geodynamo evolution during the past 3.5 billion years.展开更多
The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular ...The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular orbit of altitude of about 450 km with a low inclination of 41°.After careful evaluation and calibration(7^(th)June 2023 to 31^(st)July 2024),the data of MSS-1 were released to the international scientific community on 1 August 2024,providing the highly accurate data of global geomagnetic field with an unprecedented local-time coverage to the community.This special issue of Initial Scientific Results of MSS-1,primarily driven by the new MSS-1 data,contains 27 research articles ranging from the MSS-1 design,satellite data analysis,outer core dynamics,mantle induction,lithospheric field modeling,ocean induced magnetic field,ionosphere and magnetosphere currents,to solar activities.展开更多
Seismic P velocity structure is determined for the upper 500 km of the inner core and lowermost 200 km of the outer core from differential travel times and amplitude ratios. Results confirm the existence of a globally...Seismic P velocity structure is determined for the upper 500 km of the inner core and lowermost 200 km of the outer core from differential travel times and amplitude ratios. Results confirm the existence of a globally uniform F region of reduced P velocity gradient in the lowermost outer core, consistent with iron enrichment near the boundary of a solidifying inner core. P velocity of the inner core between the longitudes 45~E and 180~E (quasi-Eastern Hemisphere) is greater than or equal to that of an AK135-F reference model whereas that between 180~W and 45~E (quasi-Western Hemisphere) is less than that of the reference model Observation of this heterogeneity to a depth of 550 km below the inner core and the existence of transitions rather than sharp boundaries between quasi-hemispheres favor either no or very slow inner core super rotation or oscillations with respect to the mantle. Degree- one seismic heterogeneity may be best explained by active inner core freezing beneath the equatorial Indian Ocean dominating structure in the quasi-Eastern Hemisphere and inner core melting beneath equatorial Pacific dominating structure in the quasi-Western Hemisphere. Variations in waveforms also suRgest the existence of smaller-scale (1 to 100 km) heterogeneity.展开更多
Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculat...Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.展开更多
Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the f...Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.展开更多
It is commonly known that the climate debate suffers due to a lack of knowledge about the cause and effect relationship between a number of climatic temperature variations that have occurred in history without being a...It is commonly known that the climate debate suffers due to a lack of knowledge about the cause and effect relationship between a number of climatic temperature variations that have occurred in history without being able to blame human emission of greenhouse gas in any way. Only when we are willing to give up the idea that there is a geodynamo deep inside of the Earth being responsible for the Earth’s magnetic field and when we get back to the idea that the origin of the magnetic field is simply ferromagnetic, will it be possible to establish two different cause and effect connections that are suitable to explain why there is an acknowledged coincidence between climatic temperature variations and an intensive, proportional variation in the strength of the Earth’s magnetic field. Such insight may easily prove to be decisive at a time when many people can no longer differentiate between politics, mass hysteria, presumptions and actual knowledge. When there are requirements that a solution to climatic temperature variations must contain the solution to the coincidence mentioned, two possible scenarios exist. The one possibility (although not very likely) that is suitable to solve the mysterious coincidence is that mainly the northern part of the Atlantic Ocean is heated from within (from the interior of the Earth) and that variations in the Earth’s emission of heat cause primarily all of Europe to have witnessed warm winters for decades. The one possible cause and effect connection may (in theory) be that inner heat in the Earth’s crust can loosen frozen, ferromagnetic structures, thereby drive the Earth’s ferromagnetic, magnetic field to restructure and be reorganised from periodically being a chaotic, magnetic field to periodically being a well-structured, ferromagnetic field. The connection between magnetism and thermal impact is already commonly known. The other and somewhat more likely cause and effect connection is building on Henrik Svensmark’s (and teams) theory that says that variations in the cosmic radiation reaching the Earth depend on the strength of the Sun’s magnetic field and that this radiation contributes to creating aerosols, thereby variations in the cloud formation. Solar storms contribute to temporarily strengthening the Earth’s magnetic field. The question is whether these contributions could also periodically have a long-term effect on the Earth’s magnetic field. In that case, this may explain the reason for the above-mentioned coincidence.展开更多
The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of e...The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of electromagnetic(EM)core-mantle coupling.However,past estimations of the EM coupling torque from surface geomagnetic observations is too weak to account for the observed decadal polar motion.Our recent estimations from numerical geodynamo simulations have shown the opposite.In this paper,we re-examine in detail the EM coupling mechanism and the properties of the magnetic field in the electrically conducting lower mantle(characterized by a thin D '-layer at the base of the mantle).Our simulations find that the toroidal field in the D'-layer from the induction and convection of the toroidal field in the outer core could be potentially much stronger than that from the advection of the poloidal field in the outer core.The former,however,cannot be inferred from geomagnetic observations at the Earth’s surface,and is missing in previous EM torque estimated from geomagnetic observations.Our deduction suggests further that this field could make the actual EM coupling torque sufficiently strong,at approximately 5×1019 Nm,to excite,and hence explain,the decadal polar motion to magnitude of approximately 10 mas.展开更多
The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly co...The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.展开更多
Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic f...Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic field.The presence of model errors in the geomagnetic data assimilation is inevitable because current numerical geodynamo models are still far from realistic core dynamics.In this paper,we investigate the effect of model errors in geomagnetic data assimilation based on ensemble Kalman filter(EnKF).We construct two dynamo models with different control parameters but exhibiting similar force balance and magnetic morphology at the core surface.We then use one dynamo model to generate synthetic observations and the other as the forward model in EnKF.Our test experiments show that the EnKF approach with the pre-setting model errors can nevertheless recover large-scale core surface flow and make a rough short-term(5-year)prediction.However,the data assimilation in the presence of model errors cannot keep improving the core state even though new observations are available.Motivated by the planned Macao Science Satellite-1,which is expected to provide improved internal geomagnetic field model,we also perform a test experiment using synthetic observations up to spherical harmonic degree l=18.Our results indicate that high-resolution observations are crucial in reconstructing small scale flow.展开更多
文摘With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Wei Yong(魏勇)at the Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences,proposed that the implantation of Earth’s atmospheric ions into the farside lunar soil could reveal the geodynamo evolution during the past 3.5 billion years.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation and China National Space Administration。
文摘The scientific research of geomagnetism has been largely driven by new geomagnetic data that are available to scientists.Macao Science Satellite-1(MSS-1)was successfully launched on 21st May 2023 into a near-circular orbit of altitude of about 450 km with a low inclination of 41°.After careful evaluation and calibration(7^(th)June 2023 to 31^(st)July 2024),the data of MSS-1 were released to the international scientific community on 1 August 2024,providing the highly accurate data of global geomagnetic field with an unprecedented local-time coverage to the community.This special issue of Initial Scientific Results of MSS-1,primarily driven by the new MSS-1 data,contains 27 research articles ranging from the MSS-1 design,satellite data analysis,outer core dynamics,mantle induction,lithospheric field modeling,ocean induced magnetic field,ionosphere and magnetosphere currents,to solar activities.
基金supported by the National Science Foundation of USA(Nos.EAR 07-38492 and EAR 11-60917)
文摘Seismic P velocity structure is determined for the upper 500 km of the inner core and lowermost 200 km of the outer core from differential travel times and amplitude ratios. Results confirm the existence of a globally uniform F region of reduced P velocity gradient in the lowermost outer core, consistent with iron enrichment near the boundary of a solidifying inner core. P velocity of the inner core between the longitudes 45~E and 180~E (quasi-Eastern Hemisphere) is greater than or equal to that of an AK135-F reference model whereas that between 180~W and 45~E (quasi-Western Hemisphere) is less than that of the reference model Observation of this heterogeneity to a depth of 550 km below the inner core and the existence of transitions rather than sharp boundaries between quasi-hemispheres favor either no or very slow inner core super rotation or oscillations with respect to the mantle. Degree- one seismic heterogeneity may be best explained by active inner core freezing beneath the equatorial Indian Ocean dominating structure in the quasi-Eastern Hemisphere and inner core melting beneath equatorial Pacific dominating structure in the quasi-Western Hemisphere. Variations in waveforms also suRgest the existence of smaller-scale (1 to 100 km) heterogeneity.
基金Ministry of Earth Sciences,Government of India for financial support under the project grant no.MoES/16/25/10-RDEASDST,INSPIRE program by Department of Science and Technology,Government of India for financial support。
文摘Thermal conductivity(k)of iron is measured up to about 134 GPa.The measurements are carried out using the single sided laser heated diamond anvil cell,where the power absorbed by a Fe metal foil at hotspot is calculated using a novel thermodynamical method.Thermal conductivity of fee(γ)-Fe increases up to a pressure of about46 GPa.We find thermal conductivity values in the range of 70-80 Wm-1K-1(with an uncertainty of 40%),almost constant with pressure,in the hcp(e)phase of Fe.We attribute the pressure independent k above 46 GPa to the strong electronic correlation effects driven by the electronic topological transition(ETT).We predict a value of thermal conductivity ofε-Fe of about 40±16 Wm-1K-1 at the outer core of Earth.
基金supported by Macao Science and Technology Development Fund grant 0001/2019/A1Macao Foundation+1 种基金the preresearch Project on Civil Aerospace Technologies of CNSA(Grants No.D020303 and D020308)the National Natural Science Foundation of China(41904066,42142034)。
文摘Earth’s magnetic field,which is generated in the liquid outer core through the dynamo action,undergoes changes on timescales of a few years to several million years,yet the underlying mechanisms responsible for the field variations remain to be elucidated.In this study,we apply a novel data analysis technique developed in fluid dynamics,namely the dynamic mode decomposition,to analyze the geomagnetic variations over the last two decades when continuous satellite observations are available.The dominant dynamic modes are extracted by solving an eigen-value problem,so one can identify modes with periods longer than the time span of data.Our analysis show that similar dynamic modes are extracted from the geomagnetic secular variation and secular acceleration,justifying the validity of applying the dynamic mode decomposition method to geomagnetic field.We reveal that the geomagnetic field variations are characterized by a global mode with period of 58 years,a localized mode with period of 16 years and an equatorially trapped mode with period of 8.5 years.These modes are possibly related to magnetohydrodynamic waves in the Earth’s outer core.
文摘It is commonly known that the climate debate suffers due to a lack of knowledge about the cause and effect relationship between a number of climatic temperature variations that have occurred in history without being able to blame human emission of greenhouse gas in any way. Only when we are willing to give up the idea that there is a geodynamo deep inside of the Earth being responsible for the Earth’s magnetic field and when we get back to the idea that the origin of the magnetic field is simply ferromagnetic, will it be possible to establish two different cause and effect connections that are suitable to explain why there is an acknowledged coincidence between climatic temperature variations and an intensive, proportional variation in the strength of the Earth’s magnetic field. Such insight may easily prove to be decisive at a time when many people can no longer differentiate between politics, mass hysteria, presumptions and actual knowledge. When there are requirements that a solution to climatic temperature variations must contain the solution to the coincidence mentioned, two possible scenarios exist. The one possibility (although not very likely) that is suitable to solve the mysterious coincidence is that mainly the northern part of the Atlantic Ocean is heated from within (from the interior of the Earth) and that variations in the Earth’s emission of heat cause primarily all of Europe to have witnessed warm winters for decades. The one possible cause and effect connection may (in theory) be that inner heat in the Earth’s crust can loosen frozen, ferromagnetic structures, thereby drive the Earth’s ferromagnetic, magnetic field to restructure and be reorganised from periodically being a chaotic, magnetic field to periodically being a well-structured, ferromagnetic field. The connection between magnetism and thermal impact is already commonly known. The other and somewhat more likely cause and effect connection is building on Henrik Svensmark’s (and teams) theory that says that variations in the cosmic radiation reaching the Earth depend on the strength of the Sun’s magnetic field and that this radiation contributes to creating aerosols, thereby variations in the cloud formation. Solar storms contribute to temporarily strengthening the Earth’s magnetic field. The question is whether these contributions could also periodically have a long-term effect on the Earth’s magnetic field. In that case, this may explain the reason for the above-mentioned coincidence.
基金supported by NASA Earth Surface and Interior (ESI) Program (W.K.and J.C.)NASA Geomagnetic Infrastructure Fund+4 种基金NASA GSFC SEEC Fund (W.K.)NASA GRACE Project (J.C.)Taiwan Ministry of Science and Technology via grant 106-2116-M-001-013(B. F. Chao)NASA GSFC fellowship programIES of Academia Sinica for support of visiting tenure
文摘The observed Earth’s polar motion on decadal time scales has long been conjectured to be excited by the exchange of equatorial angular momentum between the solid mantle and the fluid outer core,via the mechanism of electromagnetic(EM)core-mantle coupling.However,past estimations of the EM coupling torque from surface geomagnetic observations is too weak to account for the observed decadal polar motion.Our recent estimations from numerical geodynamo simulations have shown the opposite.In this paper,we re-examine in detail the EM coupling mechanism and the properties of the magnetic field in the electrically conducting lower mantle(characterized by a thin D '-layer at the base of the mantle).Our simulations find that the toroidal field in the D'-layer from the induction and convection of the toroidal field in the outer core could be potentially much stronger than that from the advection of the poloidal field in the outer core.The former,however,cannot be inferred from geomagnetic observations at the Earth’s surface,and is missing in previous EM torque estimated from geomagnetic observations.Our deduction suggests further that this field could make the actual EM coupling torque sufficiently strong,at approximately 5×1019 Nm,to excite,and hence explain,the decadal polar motion to magnitude of approximately 10 mas.
基金financial support from the National Natural Science Foundation of China(Grant Nos.41804082 and 41873073)the Special Research Assistant Funding Program provided by the Chinese Academy of Sciences。
文摘The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.
基金supported by the Macao Foundation and preresearch project on Civil Aerospace Technologies of CNSA(D020308,D020303)the Macao Science and Technology Development Fund(0001/2019/A1)the National Natural Science Foundation of China(41904066,42142034)。
文摘Earth’s magnetic field is generated in the fluid outer core through the dynamo process.Over the last decade,data assimilation has been used to retrieve the core dynamics and predict the evolution of the geomagnetic field.The presence of model errors in the geomagnetic data assimilation is inevitable because current numerical geodynamo models are still far from realistic core dynamics.In this paper,we investigate the effect of model errors in geomagnetic data assimilation based on ensemble Kalman filter(EnKF).We construct two dynamo models with different control parameters but exhibiting similar force balance and magnetic morphology at the core surface.We then use one dynamo model to generate synthetic observations and the other as the forward model in EnKF.Our test experiments show that the EnKF approach with the pre-setting model errors can nevertheless recover large-scale core surface flow and make a rough short-term(5-year)prediction.However,the data assimilation in the presence of model errors cannot keep improving the core state even though new observations are available.Motivated by the planned Macao Science Satellite-1,which is expected to provide improved internal geomagnetic field model,we also perform a test experiment using synthetic observations up to spherical harmonic degree l=18.Our results indicate that high-resolution observations are crucial in reconstructing small scale flow.