The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this ...The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this study, the simulation of soil erosion and its quantitative attribution analysis have been conducted in different geomorphological types in a typical karst basin based on the RUSLE model and the geodetector method. The influencing factors, such as land use type, slope, rainfall, elevation, lithology and vegetation cover, have been taken into consideration. Results show that the strength of association between the six influencing factors and soil erosion was notably different in diverse geomorphological types. Land use type and slope were the dominant factors of soil erosion in the Sancha River Basin, especially for land use type whose power of determinant(q value) for soil erosion was much higher than other factors. The q value of slope declined with the increase of relief in mountainous areas, namely it was ranked as follows: middle elevation hill> small relief mountain> middle relief mountain. Multi-factors interactions were proven to significantly strengthen soil erosion, particularly for the combination of land use type with slope, which can explain 70% of soil erosion distribution. It can be found that soil erosion in the same land use type with different slopes(such as dry land with slopes of 5° and above 25°) or in the diverse land use types with the same slope(such as dry land and forest with a slope of 5°), varied much. These indicate that prohibiting steep slope cultivation and Grain for Green Project are reasonable measures to control soil erosion in karst areas. Based on statistics of soil erosion difference between diverse stratifications of each influencing factor, results of risk detector suggest that the amount of stratification combinations with significant difference accounted for 55% at least in small relief mountain and middle relief mountainous areas. Therefore, the spatial heterogeneity of soil erosion and its influencing factors in different geomorphological types should be investigated to control karst soil loss more effectively.展开更多
Since the implementation of the reform and opening-up policy,China has undergone a period of rapid development.However,this urban expansion has been accompanied by significant ecological challenges.Therefore,understan...Since the implementation of the reform and opening-up policy,China has undergone a period of rapid development.However,this urban expansion has been accompanied by significant ecological challenges.Therefore,understanding the relationship between urban expansion and ecological sustainability is crucial for future urban planning.This study analyzes land use data to investigate the spatiotemporal dynamics of urban agglomeration expansion from 2000 to 2020.Using MODIS satellite data,this study constructs a Remote Sensing Ecological Index(RSEI)model to assess ecological quality changes over the past two decades.Additionally,an improved coupling coordination model is applied to examine the interaction between urban expansion and ecological quality and to evaluate the spatiotemporal trends of their coordination.The results indicate that:①From 2000 to 2020,urban expansion in the Henan section of the Yellow River Basin followed a pattern of“growth-growthdecline”.Pattern recognition analysis indicated that both urban agglomerations and individual cities primarily expanded through edge extension and infill development,while enclave-style expansion occurred in only a small portion of the region.②Between 2000 and 2020,the ecological quality of urban agglomerations in the Henan section of the Yellow River Basin showed a slight improvement.RSEI values ranged from 0.4 to 0.7,indicating moderate ecological quality.Ecological quality exhibited a spatial pattern of being higher in the southwest and lower in the northeast.Significant declines in ecological quality were primarily concentrated in urban built-up areas,forming a patch-like distribution.Conversely,notable improvements in ecological quality occurred mainly in the mountainous regions of the southwest and north.③Between 2000 and 2020,the coupling coordination level of urban agglomerations showed an increasing trend.Coupling coordination values ranged from 0.248 to 0.734.Most cities were near an imbalance between urban expansion and ecological quality,while Zhengzhou was the only city to consistently maintain coordinated development over two decades.Spatially,highly imbalanced areas were mainly concentrated in the western and southern Henan sections,particularly in Sanmenxia and Luoyang.Conversely,areas with high coupling coordination were centered around Zhengzhou,showing a radial expansion pattern in recent years.展开更多
基金National Basic Research Program of China,No.2015CB452702National Natural Science Foundation of China,No.41671098,No.41530749
文摘The formation mechanism and influencing factors identification of soil erosion are the core and frontier issues of current research. However, studies on the multi-factor synthesis are still relatively lacked. In this study, the simulation of soil erosion and its quantitative attribution analysis have been conducted in different geomorphological types in a typical karst basin based on the RUSLE model and the geodetector method. The influencing factors, such as land use type, slope, rainfall, elevation, lithology and vegetation cover, have been taken into consideration. Results show that the strength of association between the six influencing factors and soil erosion was notably different in diverse geomorphological types. Land use type and slope were the dominant factors of soil erosion in the Sancha River Basin, especially for land use type whose power of determinant(q value) for soil erosion was much higher than other factors. The q value of slope declined with the increase of relief in mountainous areas, namely it was ranked as follows: middle elevation hill> small relief mountain> middle relief mountain. Multi-factors interactions were proven to significantly strengthen soil erosion, particularly for the combination of land use type with slope, which can explain 70% of soil erosion distribution. It can be found that soil erosion in the same land use type with different slopes(such as dry land with slopes of 5° and above 25°) or in the diverse land use types with the same slope(such as dry land and forest with a slope of 5°), varied much. These indicate that prohibiting steep slope cultivation and Grain for Green Project are reasonable measures to control soil erosion in karst areas. Based on statistics of soil erosion difference between diverse stratifications of each influencing factor, results of risk detector suggest that the amount of stratification combinations with significant difference accounted for 55% at least in small relief mountain and middle relief mountainous areas. Therefore, the spatial heterogeneity of soil erosion and its influencing factors in different geomorphological types should be investigated to control karst soil loss more effectively.
基金State Key Laboratory of Spatial Datum(No.SKLSD2025-ZZ-17)National Natural Science Foundation of China(No.U21A2014)+2 种基金High-Resolution Satellite Project of the State Administration of Science,Technology,and Industry for National Defense of the PRC(No.80Y50G19-9001-22/23)National Science and Technology Platform Construction Project(No.2005DKA32300)Major Research Projects of the Ministry of Education(No.16JJD770019).
文摘Since the implementation of the reform and opening-up policy,China has undergone a period of rapid development.However,this urban expansion has been accompanied by significant ecological challenges.Therefore,understanding the relationship between urban expansion and ecological sustainability is crucial for future urban planning.This study analyzes land use data to investigate the spatiotemporal dynamics of urban agglomeration expansion from 2000 to 2020.Using MODIS satellite data,this study constructs a Remote Sensing Ecological Index(RSEI)model to assess ecological quality changes over the past two decades.Additionally,an improved coupling coordination model is applied to examine the interaction between urban expansion and ecological quality and to evaluate the spatiotemporal trends of their coordination.The results indicate that:①From 2000 to 2020,urban expansion in the Henan section of the Yellow River Basin followed a pattern of“growth-growthdecline”.Pattern recognition analysis indicated that both urban agglomerations and individual cities primarily expanded through edge extension and infill development,while enclave-style expansion occurred in only a small portion of the region.②Between 2000 and 2020,the ecological quality of urban agglomerations in the Henan section of the Yellow River Basin showed a slight improvement.RSEI values ranged from 0.4 to 0.7,indicating moderate ecological quality.Ecological quality exhibited a spatial pattern of being higher in the southwest and lower in the northeast.Significant declines in ecological quality were primarily concentrated in urban built-up areas,forming a patch-like distribution.Conversely,notable improvements in ecological quality occurred mainly in the mountainous regions of the southwest and north.③Between 2000 and 2020,the coupling coordination level of urban agglomerations showed an increasing trend.Coupling coordination values ranged from 0.248 to 0.734.Most cities were near an imbalance between urban expansion and ecological quality,while Zhengzhou was the only city to consistently maintain coordinated development over two decades.Spatially,highly imbalanced areas were mainly concentrated in the western and southern Henan sections,particularly in Sanmenxia and Luoyang.Conversely,areas with high coupling coordination were centered around Zhengzhou,showing a radial expansion pattern in recent years.