This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements o...This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements of the C2 coal seam in the Fengfeng mining area of the Handan Coalfield in Hebei,China.The periodic variation of the geochemical behavior of elements was observed to change towards a certain direction as the degree of metamorphism of a geological body increased.Based on the coincidence degree(or similarity degree)between the geochemical behavior of elements and periodic variation of elements,the 57 elements in this study were divided into two levels.The periodic variation of the geochemical behavior of first-level elements was largely synchronous with that of their first ionization energy,suggesting that only one differentiation mode exists and the elements are mainly inorganically associated.The differentiation mode of the second-level elements deviated to a certain extent from their first ionization energy;the larger the deviation,the more complicated and diverse was the differentiation mode.Among the second-level elements,the grade of coal metamorphism has evident and intuitive effects on the proportion of elements with particular structural features,such as the 4q+3 type of elements and the odd-odd elements.In addition,the distribution of elements in organic and inorganic matter within coal are subject to the structural features of the elements.The differentiation mode and differentiation intensity of elements could be characterized by the hierarchical parameter and differentiation intensity.The hierarchical parameter and differentiation intensity of certain elements showed a good positive or negative correlation with R_(max) in coal.The 57 elements in this study were quantitatively ordered according to the degree of magmatic hydrothermal fluid influence and thermal metamorphism of coal through graphs depicting the goodness of fit,correlation coefficient with R_(max),and differentiation intensity.The results of this study are consistent with the results of previous field research,illustrating the scientific significance and application value of this study on the periodic variation of the geochemical behavior of elements.展开更多
Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and...Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and amorphous. The main purpose of this study is to identify the geochemical relationship of phosphorus and sulfur elements and also three-dimensional modeling of mineralization of these elements in iron ore. In order to achieve the research goal, methods such as k-mean clustering technique, concentration-volume fractal as well as block modeling with kriging estimator and Inverse Distance Weighting (IDW) interpolator were used. The model of geochemical behavior of phosphorus and sulfur elements compared to iron is of great importance because these two elements are known as deleterious elements in mineral processing and steelmaking processes, which are the post-mining stages. Existence of geochemical model and identification of elements’ behavior towards each other play a key role in optimizing mining operations in order to achieve geometallurgical goals. The results of this study are the three-dimensional model of mineralization of iron, phosphorus and sulfur elements, separation of phosphorus and sulfur mineralization communities and also presenting the model of enrichment community of these two elements. All the results are in line with geometallurgical studies and can optimize the next steps by optimizing the mining process.展开更多
Dissolved selenium in the Changjiang(Yangtze) Estuary and its adjacent waters was determined by hydride generation atomic fluorescence spectrometry to elucidate the source, behavior in estuary, adsorption-desorption...Dissolved selenium in the Changjiang(Yangtze) Estuary and its adjacent waters was determined by hydride generation atomic fluorescence spectrometry to elucidate the source, behavior in estuary, adsorption-desorption process and biological role. In surface water, Se(IV) concentration ranged 0.05–1.14 nmol/L and Se(VI) concentration varied 0.01–1.20 nmol/L, with the means of 0.76 and 0.49 nmol/L, respectively. In bottom water, Se(IV) content varied 0.03–0.27 nmol/L and Se(VI) content ranged 0.04–0.85 nmol/L, with the averages of 0.10 and 0.40 nmol/L, respectively. High level of Se(IV) was observed near the shore with a significant decrease towards the open sea, suggesting the continental input from the adjacent rivers. Large value of Se(VI) was found in bottom water, reflecting the release from suspended sediment. Besides, high value appeared in the same latitude of the Changjiang Estuary and Hangzhou Bay illustrated the effect of lateral mixing and the long-distance transport of selenium. Se(VI), more soluble, occupied higher percentage in aqueous environment. The presence of Se(IV) resulted from the degradation of residue and the reduction of Se(VI) under anaerobic condition. The positive relationship to suspended particulate material(SPM) and negative correlation to depth indicated that Se(IV) tended to be released from the high density particulate matter. Instead, Se(VI) content did not significantly relate to SPM since it generally formed inner-sphere complex to iron hydroxide. Se(IV) content negatively varied to salinity and largely depended on the freshwater dilution and physical mixing. While, Se(VI) level deviated from the dilution line due to the in situ biogeochemical process such as removal via phytoplankton uptake and inputs via organic matter regeneration. As the essential element, Se(IV) was confirmed more bioavailable to phytoplankton growth than Se(VI), and moreover, seemed to be more related to phosphorus than to nitrogen.展开更多
Samples of 21 soil profiles and 165 top soils from an area of approximate 1.5km^2 on red-earthy hill landscape were collected and analysed.The content of Ca,Mg,K,P,Fe,Mn,Zn and Cu in soils relate with the kind of pare...Samples of 21 soil profiles and 165 top soils from an area of approximate 1.5km^2 on red-earthy hill landscape were collected and analysed.The content of Ca,Mg,K,P,Fe,Mn,Zn and Cu in soils relate with the kind of parent material and the position of topography,however,there is great variation due to the local difference of the form of soil utilization.From the difference in spatial distribution of elements content,it is believed that eight kinds of elements are lost by chemical leaching and physical translocation,meanwhile some are added (such as Ca,P,K,Mg) and some mobilized (such as Fe,Mn,Zn,Cu and P) through cultivation,fertilization and irrigation in the soils on the landscape investigated.The sectional differentiation in abundance or deficiency of elements in top soils on the landscape investigated is distinct,which is important for carrying out agricultural management and reasonable fertilization according to local conditions.展开更多
With sulfide increasingly recognized as an important parameter to assess the oxidation-reduction level in aqueous enviromnent, research on its geochemical behavior is becoming important. Water samples collected in Boh...With sulfide increasingly recognized as an important parameter to assess the oxidation-reduction level in aqueous enviromnent, research on its geochemical behavior is becoming important. Water samples collected in Bohai Sea (1-19 August, 2010), Yellow Sea (20-30 November, 2010) and East China Sea (3-17 June, 2010 and 1-10 November, 2010) were used to determine the occurrence and distribution of dissolved sulfide by methylene blue spectrophotometric method. Results show that: (1) horizontally, concentration of dissolved sulfide significantly varied from the coastal region to the open sea and profoundly influenced by physical processes. High values occurred in the river-sea boundary zone "marginal filter" due to rich riverine input, frequent upwelling and active exchange in shelf edge. Terrestrial input from adjacent rivers and the current cycling contributed to the high sulfide appeared in western Bohai Sea, eastern Shandong Peninsula, and northeast of Changjiang (Yangtze) River estuary. Especially, relative higher sulfide values occurred in Yellow Sea, which is consistent with the variation of salinity largely due to the hydrodynamic feature; (2) vertically, measurement of dissolved sulfide in bottom water was higher and more variable than that in surface water caused by the wind-induced resuspension and dissimilatory sulfate reduction. Moreover, nutrient-type profile clearly identified that oxidation plays a major role in the biogeochemistry cycle of sulfide in water; (3) seasonally, investigation for East China Sea in June and November reflected seasonal variation of Changjiang River Diluted Water, Kuroshio Current, and Taiwan Warm Current. Concentration in June was much higher than that sampled in November at most stations. Mean concentration of dissolved sulfide varied seasonally from 2.26 μg/L (June) to 1.16 μg/L (November) in surface and 3.00 μg/L (June) to 1.56 μg/L (November) in bottom. Progress in the field is slow and more effort is needed to ensure the accuracy and reliability of determination and estimate the natural or anthropogenic contribution of dissolved sulfide in ecosystems.展开更多
The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,...The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,WE weathering crusts developed on volcanic clastic rock, gray aptitic basalt with tuff or basaltic bedrock. On change of minerals, geochemical behaviors of elements, migration and enrichment regularities of elements, Correlation between element geochemical behaviors, change of weathering potential of rocks in chemical weathering process are studied by us.We can see that the sequence fo weathering strengths of the abovementioned sections, from high to low, should reflected in TW, GW, CW and SWT and basical correspond with that calculated from the enrichment and differentiation indexes.展开更多
The Oligocene Yacheng Fm contains the most important source rocks that have been confirmed by exploratory wells in the Qiongdongnan Basin.The efficiency of these source rocks is the key to the breakthrough in natural ...The Oligocene Yacheng Fm contains the most important source rocks that have been confirmed by exploratory wells in the Qiongdongnan Basin.The efficiency of these source rocks is the key to the breakthrough in natural gas exploration in the study area.This paper analyzes the hydrocarbon potential of each sag in this basin from the perspective of control of both source rocks and geothermal heat.Two types of source rocks occur in the Yacheng Fm,namely mudstone of transitional facies and mudstone of neritic facies.Both of them are dominated by a kerogen of type-III,followed by type-II.Their organic matter abundances are controlled by the amount of continental clastic input.The mudstone of transitional facies is commonly higher in organic matter abundance,while that of neritic facies is lower.The coal-measure source rocks of transitional facies were mainly formed in such environments as delta plains,coastal plains and barrier tidal flat-marshes.Due to the control of Cenozoic lithosphere extension and influence of neotectonism,the geothermal gradient,terrestrial heat flow value(HFV)and level of thermal evolution are generally high in deep water.The hot setting not only determines the predominance of gas generation in the deep-water sags,but can promote the shallow-buried source rocks in shallow water into oil window to generate oil.In addition to promoting the hydrocarbon generation of source rocks,the high geothermal and high heat flow value can also speed up the cracking of residual hydrocarbons,thus enhancing hydrocarbon generation efficiency and capacity.According to the theory of joint control of source quality and geothermal heat on hydrocarbon generation,we comprehensively evaluate and rank the exploration potentials of major sags in the Qiongdongnan Basin.These sags are divided into 3 types,of which type-I sags including Yanan,Lingshui,Baodao,Ledong and Huaguang are the highest in hydrocarbon exploration potential.展开更多
Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the ...Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.41672145 and 42172191)the Science Foundation of Hebei(Grant No.D2021402013)。
文摘This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements of the C2 coal seam in the Fengfeng mining area of the Handan Coalfield in Hebei,China.The periodic variation of the geochemical behavior of elements was observed to change towards a certain direction as the degree of metamorphism of a geological body increased.Based on the coincidence degree(or similarity degree)between the geochemical behavior of elements and periodic variation of elements,the 57 elements in this study were divided into two levels.The periodic variation of the geochemical behavior of first-level elements was largely synchronous with that of their first ionization energy,suggesting that only one differentiation mode exists and the elements are mainly inorganically associated.The differentiation mode of the second-level elements deviated to a certain extent from their first ionization energy;the larger the deviation,the more complicated and diverse was the differentiation mode.Among the second-level elements,the grade of coal metamorphism has evident and intuitive effects on the proportion of elements with particular structural features,such as the 4q+3 type of elements and the odd-odd elements.In addition,the distribution of elements in organic and inorganic matter within coal are subject to the structural features of the elements.The differentiation mode and differentiation intensity of elements could be characterized by the hierarchical parameter and differentiation intensity.The hierarchical parameter and differentiation intensity of certain elements showed a good positive or negative correlation with R_(max) in coal.The 57 elements in this study were quantitatively ordered according to the degree of magmatic hydrothermal fluid influence and thermal metamorphism of coal through graphs depicting the goodness of fit,correlation coefficient with R_(max),and differentiation intensity.The results of this study are consistent with the results of previous field research,illustrating the scientific significance and application value of this study on the periodic variation of the geochemical behavior of elements.
文摘Sheytoor Iron Ore deposit is located in Yazd province of Iran (Bafq). The most abundant ore is magnetite, which can be seen in the form of mass and granular tissue in various forms of self-shaped, semi-self-shaped and amorphous. The main purpose of this study is to identify the geochemical relationship of phosphorus and sulfur elements and also three-dimensional modeling of mineralization of these elements in iron ore. In order to achieve the research goal, methods such as k-mean clustering technique, concentration-volume fractal as well as block modeling with kriging estimator and Inverse Distance Weighting (IDW) interpolator were used. The model of geochemical behavior of phosphorus and sulfur elements compared to iron is of great importance because these two elements are known as deleterious elements in mineral processing and steelmaking processes, which are the post-mining stages. Existence of geochemical model and identification of elements’ behavior towards each other play a key role in optimizing mining operations in order to achieve geometallurgical goals. The results of this study are the three-dimensional model of mineralization of iron, phosphorus and sulfur elements, separation of phosphorus and sulfur mineralization communities and also presenting the model of enrichment community of these two elements. All the results are in line with geometallurgical studies and can optimize the next steps by optimizing the mining process.
基金The National Natural Science Foundation of China for Creative Research Groups under contract No.41121064the National Natural Science Foundation of China under contract No.41306055+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA05030402the National Basic Research Program of China(973 Program)under contract No.2011CB403602
文摘Dissolved selenium in the Changjiang(Yangtze) Estuary and its adjacent waters was determined by hydride generation atomic fluorescence spectrometry to elucidate the source, behavior in estuary, adsorption-desorption process and biological role. In surface water, Se(IV) concentration ranged 0.05–1.14 nmol/L and Se(VI) concentration varied 0.01–1.20 nmol/L, with the means of 0.76 and 0.49 nmol/L, respectively. In bottom water, Se(IV) content varied 0.03–0.27 nmol/L and Se(VI) content ranged 0.04–0.85 nmol/L, with the averages of 0.10 and 0.40 nmol/L, respectively. High level of Se(IV) was observed near the shore with a significant decrease towards the open sea, suggesting the continental input from the adjacent rivers. Large value of Se(VI) was found in bottom water, reflecting the release from suspended sediment. Besides, high value appeared in the same latitude of the Changjiang Estuary and Hangzhou Bay illustrated the effect of lateral mixing and the long-distance transport of selenium. Se(VI), more soluble, occupied higher percentage in aqueous environment. The presence of Se(IV) resulted from the degradation of residue and the reduction of Se(VI) under anaerobic condition. The positive relationship to suspended particulate material(SPM) and negative correlation to depth indicated that Se(IV) tended to be released from the high density particulate matter. Instead, Se(VI) content did not significantly relate to SPM since it generally formed inner-sphere complex to iron hydroxide. Se(IV) content negatively varied to salinity and largely depended on the freshwater dilution and physical mixing. While, Se(VI) level deviated from the dilution line due to the in situ biogeochemical process such as removal via phytoplankton uptake and inputs via organic matter regeneration. As the essential element, Se(IV) was confirmed more bioavailable to phytoplankton growth than Se(VI), and moreover, seemed to be more related to phosphorus than to nitrogen.
文摘Samples of 21 soil profiles and 165 top soils from an area of approximate 1.5km^2 on red-earthy hill landscape were collected and analysed.The content of Ca,Mg,K,P,Fe,Mn,Zn and Cu in soils relate with the kind of parent material and the position of topography,however,there is great variation due to the local difference of the form of soil utilization.From the difference in spatial distribution of elements content,it is believed that eight kinds of elements are lost by chemical leaching and physical translocation,meanwhile some are added (such as Ca,P,K,Mg) and some mobilized (such as Fe,Mn,Zn,Cu and P) through cultivation,fertilization and irrigation in the soils on the landscape investigated.The sectional differentiation in abundance or deficiency of elements in top soils on the landscape investigated is distinct,which is important for carrying out agricultural management and reasonable fertilization according to local conditions.
基金Supported by the National Natural Science Foundation of China(Nos.41121064,41306055)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05030402)the National Basic Research Program of China(973 Program)(No.2011CB403602)
文摘With sulfide increasingly recognized as an important parameter to assess the oxidation-reduction level in aqueous enviromnent, research on its geochemical behavior is becoming important. Water samples collected in Bohai Sea (1-19 August, 2010), Yellow Sea (20-30 November, 2010) and East China Sea (3-17 June, 2010 and 1-10 November, 2010) were used to determine the occurrence and distribution of dissolved sulfide by methylene blue spectrophotometric method. Results show that: (1) horizontally, concentration of dissolved sulfide significantly varied from the coastal region to the open sea and profoundly influenced by physical processes. High values occurred in the river-sea boundary zone "marginal filter" due to rich riverine input, frequent upwelling and active exchange in shelf edge. Terrestrial input from adjacent rivers and the current cycling contributed to the high sulfide appeared in western Bohai Sea, eastern Shandong Peninsula, and northeast of Changjiang (Yangtze) River estuary. Especially, relative higher sulfide values occurred in Yellow Sea, which is consistent with the variation of salinity largely due to the hydrodynamic feature; (2) vertically, measurement of dissolved sulfide in bottom water was higher and more variable than that in surface water caused by the wind-induced resuspension and dissimilatory sulfate reduction. Moreover, nutrient-type profile clearly identified that oxidation plays a major role in the biogeochemistry cycle of sulfide in water; (3) seasonally, investigation for East China Sea in June and November reflected seasonal variation of Changjiang River Diluted Water, Kuroshio Current, and Taiwan Warm Current. Concentration in June was much higher than that sampled in November at most stations. Mean concentration of dissolved sulfide varied seasonally from 2.26 μg/L (June) to 1.16 μg/L (November) in surface and 3.00 μg/L (June) to 1.56 μg/L (November) in bottom. Progress in the field is slow and more effort is needed to ensure the accuracy and reliability of determination and estimate the natural or anthropogenic contribution of dissolved sulfide in ecosystems.
文摘The chief aim of this study is to investigate the chemical weathering process of the weathering crust in Great Wall Station region of China (in Fildes Peninsula), Antarctica by the method of sedimentology.CW,SW,GW,TW,WE weathering crusts developed on volcanic clastic rock, gray aptitic basalt with tuff or basaltic bedrock. On change of minerals, geochemical behaviors of elements, migration and enrichment regularities of elements, Correlation between element geochemical behaviors, change of weathering potential of rocks in chemical weathering process are studied by us.We can see that the sequence fo weathering strengths of the abovementioned sections, from high to low, should reflected in TW, GW, CW and SWT and basical correspond with that calculated from the enrichment and differentiation indexes.
基金National Key Basic Research and Development Plan(973 plans)“Basic research on oil and gas formation and distribution in deep water basins in South China Sea”(No.2009CB219400)Special and Significant Project of National Science and Technology“Key technology of marine oil and gas exploration in deep water area”(No.2008ZX05025 and 2011ZX05025)Investigation and Evaluation Project of National Strategic Petroleum Resource Provinces of the Ministry of Land and Resources(No.XQ-2004-05 and XQ-2007-05).
文摘The Oligocene Yacheng Fm contains the most important source rocks that have been confirmed by exploratory wells in the Qiongdongnan Basin.The efficiency of these source rocks is the key to the breakthrough in natural gas exploration in the study area.This paper analyzes the hydrocarbon potential of each sag in this basin from the perspective of control of both source rocks and geothermal heat.Two types of source rocks occur in the Yacheng Fm,namely mudstone of transitional facies and mudstone of neritic facies.Both of them are dominated by a kerogen of type-III,followed by type-II.Their organic matter abundances are controlled by the amount of continental clastic input.The mudstone of transitional facies is commonly higher in organic matter abundance,while that of neritic facies is lower.The coal-measure source rocks of transitional facies were mainly formed in such environments as delta plains,coastal plains and barrier tidal flat-marshes.Due to the control of Cenozoic lithosphere extension and influence of neotectonism,the geothermal gradient,terrestrial heat flow value(HFV)and level of thermal evolution are generally high in deep water.The hot setting not only determines the predominance of gas generation in the deep-water sags,but can promote the shallow-buried source rocks in shallow water into oil window to generate oil.In addition to promoting the hydrocarbon generation of source rocks,the high geothermal and high heat flow value can also speed up the cracking of residual hydrocarbons,thus enhancing hydrocarbon generation efficiency and capacity.According to the theory of joint control of source quality and geothermal heat on hydrocarbon generation,we comprehensively evaluate and rank the exploration potentials of major sags in the Qiongdongnan Basin.These sags are divided into 3 types,of which type-I sags including Yanan,Lingshui,Baodao,Ledong and Huaguang are the highest in hydrocarbon exploration potential.
基金supported by the National Natural Science Foundation of China (40701164, 40971259)the National Key Water Special Project of China (2009ZX07317-006)the Program of Shanghai Subject Chief Scientist (10XD1401600)
文摘Tidally induced resuspension processes play an important role in the release of mercury (Hg) into the water column, which increases the risk of Hg exposure to estuarine eco-systems. In order to further understand the geochemical activities of Hg in the intertidal area, the temporal variations of dissolved Hg (Hg D ) and particulate Hg (Hg P ) in the water column during the course of a tidal cycle and its geochemical processes were studied in the southern intertidal zone of the Yangtze Estuary, China. The concentrations of Hg D and Hg P varied between 37-612 ng/L and 51-638 ng/L respectively during the tidal cycle. The increase of Hg D was distinguished at the early flood tide and late ebb tide when the water flow rates were higher. The Hg D concentrations were negatively correlated with Hg P (r = 0.523, p < 0.05) and positively correlated with dissolved organic carbon (DOC) (r = 0.605, p < 0.05) in the bottom water, indicating that the Hg D released from the sediments into the overlying water was associated with the simultaneously released colloidal material in the bottom water. The main pathways for the translocation of Hg from the sediments to the overlying water include the processes of desorption from resuspended particles, advection or diffusion from sediments, and the oxidation of resuspended sulfide. The results of principal components analysis (PCA) and Pearson correlation analysis showed that the combined effects of the total suspended substrate (TSS), DOC, pH and dissolved oxygen (DO) influenced the geochemical activities of Hg in the water column during the course of a tidal cycle.