The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that...The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.展开更多
The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent t...The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.展开更多
A geo-environmental investigation is carried out to identify the suitability for treatment,storage and disposal facility(TSDF) in the industrial area at Perundurai,Tamilnadu(India).State industries promotion corporati...A geo-environmental investigation is carried out to identify the suitability for treatment,storage and disposal facility(TSDF) in the industrial area at Perundurai,Tamilnadu(India).State industries promotion corporation of Tamilnadu(SIPCOT), Perundurai is a fast growing industrial centre therefore,needs a common utility i.e.TSDF site for safe management of the industrial wastes.展开更多
Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,y...Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,yet the key conditioning factors(e.g.,topography,hydrology)remain insufficiently understood.This study proposes a novel artificial intelligence(AI)framework that integrates four machine learning(ML)models with Shapley Additive Explanations(SHAP)method,offering a hierarchical perspective from global to local on the dominant factors controlling gully distribution in wildfireaffected areas.In a case study of Xiangjiao catchment burned on March 28,2020,in Muli County in Sichuan Province of Southwest China,we derived 21 geoenvironmental factors to assess the susceptibility of post-fire gully erosion using logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models.SHAP-based model interpretation revealed eight key conditioning factors:topographic position index(TPI),topographic wetness index(TWI),distance to stream,mean annual precipitation,differenced normalized burn ratio(d NBR),land use/cover,soil type,and distance to road.Comparative model evaluation demonstrated that reduced-variable models incorporating these dominant factors achieved accuracy comparable to that of the initial-variable models,with AUC values exceeding 0.868 across all ML algorithms.These findings provide critical insights into gully erosion behavior in wildfire-affected areas,supporting the decision-making process behind environmental management and hazard mitigation.展开更多
Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geolog...Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geological periods. However, the basic geological research on China's muddy coastal zone is not enough to provide quantitative data to compare with global changes. Therefore, in 2011, China Geological Survey deployed the "Late Quaternary geo-environmental evolution and modern process of China" project, and focused on the muddy coastal zones of the Liaodong Bay, Bohai Bay, the Yellow River Delta, Yangtze River Delta and Pearl River Delta (Fig. 1). Next we will briefly introduce our latest results in the Bohai Bay.展开更多
In this paper, a geo-environmental diagnostic was implemented to classify susceptibility to desertification in southern Mozambique (Chicualacuala) and deliver responses to revert occurring land degradation. The proces...In this paper, a geo-environmental diagnostic was implemented to classify susceptibility to desertification in southern Mozambique (Chicualacuala) and deliver responses to revert occurring land degradation. The process of environmental diagnostic is a useful approach to identify the very processes and phenomena belonging to the wide ranging concept of land degradation.展开更多
The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lan...The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lands “the well-known Toshka Project”. The hydrogeological conditions of the area are subjected to detailed investigation based upon the construction of the water table maps, hydrologeologic cross-sections, pumping tests, aquifer geometry, and recharge-discharge relationship. The study revealed that the Quaternary and the Nubia sediments are the main water bearing layers in the area. The Quaternary aquifer is of limited potential and made of mixed sand with clay deposit ranges in thickness between 5 to 10 m. The Nubia aquifer is the oldest sedimentary formation and the main groundwater resources in the area. It is represented by multilayered of sand and silt exists generally under artesian conditions. It is composed of three water bearing horizons partially separated by two confining horizons and extends in thickness ranges between 70 and 230 meters. The thickness increases away from the high dam lake. The analysis of pumping tests of the aquifer indicated that its potentiality is increasing north of the High Dam Lake (HDL) whereas it decreases in the other direction. This is due to high hydraulic conductivity and aquifer thickness in the area northeast of Khor Toshka and at west of Garf Hussein. The hydraulic conductivity of the aquifer ranges between 12.73 and 0.9 m/day. The review of the changes in groundwater levels in the area showed that there is a drop in ranges between 1 and 14 meters in the last few years indicating that the extraction from the groundwater is much more higher that the replacement rate. Also, the analysis of the fluctuation of water levels of the HDL and the groundwater level indicated that the influence of water on groundwater level in the area is observed only at a distance less than 10 km from the lake shore line. Seepage from the HDL is estimated as 238.13 × 106 m3/year. The geo-environmental impacts of the development on the surface water and groundwater in the area are evaluated.展开更多
Landslides are the most intense and serious manifestations of the degradation of slopes and they are the main causes of geological hazard when they,directly or indirectly,involving towns and infrastructures.They are a...Landslides are the most intense and serious manifestations of the degradation of slopes and they are the main causes of geological hazard when they,directly or indirectly,involving towns and infrastructures.They are a global environment problem;there are several examples that have produced untold damages and loss of human lives in many parts of the world.In 1920 the landslides mobilization,as a result of a strong earthquake in China,in the province of Kansu,killed 200,000 people;in 1938 fast debris flow,triggered by heavy rainfalls in Japan,caused the death of 600 people;in 1963 in Italy the Vajont disaster caused the death of 1,899 people,as a result of a landslide localized in the underlying artificial storage.During the last years there have been many tragedies linked to intense rainfall events which have sparked many shallow landslides:1996 in Garfagnana,1998 in Sarno,2009 in the Ionic side of Messina,2011 in Liguria.To throw light on this problem,over the past decades,the assessment and mitigation of landslides hazard and the danger related to it,have become goals of paramount importance in territorial planning and,more generally,in its management and with it the safeguard of the historical and cultural heritage within it.The occurrence of events which are considered exceptional thus implies a re-reading in terms of spatial planning to renovate the slopes and river-beds,as well as urban planning,infrastructural and socio-economic organization.The complex nature of these instability events that affect anthropized areas does not allow specific approaches for the defence of single good,but it finds a more effective solution based on the extensive knowledge of territory,perhaps at the scale of individual or several watersheds.展开更多
文摘The Darjeeling Himalayan region,characterized by its complex topography and vulnerability to multiple environmental hazards,faces significant challenges including landslides,earthquakes,flash floods,and soil loss that critically threaten ecosystem stability.Among these challenges,soil erosion emerges as a silent disaster-a gradual yet relentless process whose impacts accumulate over time,progressively degrading landscape integrity and disrupting ecological sustainability.Unlike catastrophic events with immediate visibility,soil erosion’s most devastating consequences often manifest decades later through diminished agricultural productivity,habitat fragmentation,and irreversible biodiversity loss.This study developed a scalable predictive framework employing Random Forest(RF)and Gradient Boosting Tree(GBT)machine learning models to assess and map soil erosion susceptibility across the region.A comprehensive geo-database was developed incorporating 11 erosion triggering factors:slope,elevation,rainfall,drainage density,topographic wetness index,normalized difference vegetation index,curvature,soil texture,land use,geology,and aspect.A total of 2,483 historical soil erosion locations were identified and randomly divided into two sets:70%for model building and 30%for validation purposes.The models revealed distinct spatial patterns of erosion risks,with GBT classifying 60.50%of the area as very low susceptibility,while RF identified 28.92%in this category.Notable differences emerged in high-risk zone identification,with GBT highlighting 7.42%and RF indicating 2.21%as very high erosion susceptibility areas.Both models demonstrated robust predictive capabilities,with GBT achieving 80.77%accuracy and 0.975 AUC,slightly outperforming RF’s 79.67%accuracy and 0.972 AUC.Analysis of predictor variables identified elevation,slope,rainfall and NDVI as the primary factors influencing erosion susceptibility,highlighting the complex interrelationship between geo-environmental factors and erosion processes.This research offers a strategic framework for targeted conservation and sustainable land management in the fragile Himalayan region,providing valuable insights to help policymakers implement effective soil erosion mitigation strategies and support long-term environmental sustainability.
文摘The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.
文摘A geo-environmental investigation is carried out to identify the suitability for treatment,storage and disposal facility(TSDF) in the industrial area at Perundurai,Tamilnadu(India).State industries promotion corporation of Tamilnadu(SIPCOT), Perundurai is a fast growing industrial centre therefore,needs a common utility i.e.TSDF site for safe management of the industrial wastes.
基金the National Natural Science Foundation of China(42377170,42407212)the National Funded Postdoctoral Researcher Program(GZB20230606)+3 种基金the Postdoctoral Research Foundation of China(2024M752679)the Sichuan Natural Science Foundation(2025ZNSFSC1205)the National Key R&D Program of China(2022YFC3005704)the Sichuan Province Science and Technology Support Program(2024NSFSC0100)。
文摘Wildfires significantly disrupt the physical and hydrologic conditions of the environment,leading to vegetation loss and altered surface geo-material properties.These complex dynamics promote post-fire gully erosion,yet the key conditioning factors(e.g.,topography,hydrology)remain insufficiently understood.This study proposes a novel artificial intelligence(AI)framework that integrates four machine learning(ML)models with Shapley Additive Explanations(SHAP)method,offering a hierarchical perspective from global to local on the dominant factors controlling gully distribution in wildfireaffected areas.In a case study of Xiangjiao catchment burned on March 28,2020,in Muli County in Sichuan Province of Southwest China,we derived 21 geoenvironmental factors to assess the susceptibility of post-fire gully erosion using logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models.SHAP-based model interpretation revealed eight key conditioning factors:topographic position index(TPI),topographic wetness index(TWI),distance to stream,mean annual precipitation,differenced normalized burn ratio(d NBR),land use/cover,soil type,and distance to road.Comparative model evaluation demonstrated that reduced-variable models incorporating these dominant factors achieved accuracy comparable to that of the initial-variable models,with AUC values exceeding 0.868 across all ML algorithms.These findings provide critical insights into gully erosion behavior in wildfire-affected areas,supporting the decision-making process behind environmental management and hazard mitigation.
基金funded by China Geological Survey(Grants No.1212011120169 and 12120113005800)the National Natural Science Foundation of China(Grants No.41206069,41476074 and 41372173)
文摘Paleoenvironmental reconstruction is fundamental to understand the modern environmental changes and to predict future environment, which is especially critical to understand the evolution of land and sea during geological periods. However, the basic geological research on China's muddy coastal zone is not enough to provide quantitative data to compare with global changes. Therefore, in 2011, China Geological Survey deployed the "Late Quaternary geo-environmental evolution and modern process of China" project, and focused on the muddy coastal zones of the Liaodong Bay, Bohai Bay, the Yellow River Delta, Yangtze River Delta and Pearl River Delta (Fig. 1). Next we will briefly introduce our latest results in the Bohai Bay.
文摘In this paper, a geo-environmental diagnostic was implemented to classify susceptibility to desertification in southern Mozambique (Chicualacuala) and deliver responses to revert occurring land degradation. The process of environmental diagnostic is a useful approach to identify the very processes and phenomena belonging to the wide ranging concept of land degradation.
文摘The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lands “the well-known Toshka Project”. The hydrogeological conditions of the area are subjected to detailed investigation based upon the construction of the water table maps, hydrologeologic cross-sections, pumping tests, aquifer geometry, and recharge-discharge relationship. The study revealed that the Quaternary and the Nubia sediments are the main water bearing layers in the area. The Quaternary aquifer is of limited potential and made of mixed sand with clay deposit ranges in thickness between 5 to 10 m. The Nubia aquifer is the oldest sedimentary formation and the main groundwater resources in the area. It is represented by multilayered of sand and silt exists generally under artesian conditions. It is composed of three water bearing horizons partially separated by two confining horizons and extends in thickness ranges between 70 and 230 meters. The thickness increases away from the high dam lake. The analysis of pumping tests of the aquifer indicated that its potentiality is increasing north of the High Dam Lake (HDL) whereas it decreases in the other direction. This is due to high hydraulic conductivity and aquifer thickness in the area northeast of Khor Toshka and at west of Garf Hussein. The hydraulic conductivity of the aquifer ranges between 12.73 and 0.9 m/day. The review of the changes in groundwater levels in the area showed that there is a drop in ranges between 1 and 14 meters in the last few years indicating that the extraction from the groundwater is much more higher that the replacement rate. Also, the analysis of the fluctuation of water levels of the HDL and the groundwater level indicated that the influence of water on groundwater level in the area is observed only at a distance less than 10 km from the lake shore line. Seepage from the HDL is estimated as 238.13 × 106 m3/year. The geo-environmental impacts of the development on the surface water and groundwater in the area are evaluated.
文摘Landslides are the most intense and serious manifestations of the degradation of slopes and they are the main causes of geological hazard when they,directly or indirectly,involving towns and infrastructures.They are a global environment problem;there are several examples that have produced untold damages and loss of human lives in many parts of the world.In 1920 the landslides mobilization,as a result of a strong earthquake in China,in the province of Kansu,killed 200,000 people;in 1938 fast debris flow,triggered by heavy rainfalls in Japan,caused the death of 600 people;in 1963 in Italy the Vajont disaster caused the death of 1,899 people,as a result of a landslide localized in the underlying artificial storage.During the last years there have been many tragedies linked to intense rainfall events which have sparked many shallow landslides:1996 in Garfagnana,1998 in Sarno,2009 in the Ionic side of Messina,2011 in Liguria.To throw light on this problem,over the past decades,the assessment and mitigation of landslides hazard and the danger related to it,have become goals of paramount importance in territorial planning and,more generally,in its management and with it the safeguard of the historical and cultural heritage within it.The occurrence of events which are considered exceptional thus implies a re-reading in terms of spatial planning to renovate the slopes and river-beds,as well as urban planning,infrastructural and socio-economic organization.The complex nature of these instability events that affect anthropized areas does not allow specific approaches for the defence of single good,but it finds a more effective solution based on the extensive knowledge of territory,perhaps at the scale of individual or several watersheds.