This paper proposes a new discrete-time Geo/G/1 queueing model under the control of bi-level randomized(p,N1,N2)-policy.That is,the server is closed down immediately when the system is empty.If N1(≥1)customers are ac...This paper proposes a new discrete-time Geo/G/1 queueing model under the control of bi-level randomized(p,N1,N2)-policy.That is,the server is closed down immediately when the system is empty.If N1(≥1)customers are accumulated in the queue,the server is activated for service with probability p(0≤p≤1)or still left off with probability(1−p).When the number of customers in the system becomes N_(2)(≥N1),the server begins serving the waiting customers until the system becomes empty again.For the model,firstly,we obtain the transient solution of the queue size distribution and the explicit recursive formulas of the stationary queue length distribution by employing the total probability decomposition technique.Then,the expressions of its probability generating function of the steady-state queue size and the expected steady-state queue size are presented.Additionally,numerical examples are conducted to discuss the effect of the system parameters on some performance indices.Furthermore,the steady-state distribution of queue length at epochs n−,n and outside observer’s observation epoch are explored,respectively.Finally,we establish a cost function to investigate the cost optimization problem under the constraint of the average waiting time.And the presented model provides a less expected cost as compared to the traditional N-policy.展开更多
In this paper we study a Geo/T-IPH/1 queue model,where T-IPH denotes the discrete time phase type distribution defined on a birth-and-death process with countably many states.The queue model can be described by a quas...In this paper we study a Geo/T-IPH/1 queue model,where T-IPH denotes the discrete time phase type distribution defined on a birth-and-death process with countably many states.The queue model can be described by a quasi-birth-anddeath(QBD)process with countably phases.Using the operator-geometric solution method,we first give the expression of the operator and the joint stationary distribution.Then we obtain the probability generating function(PGF)for stationary queue length distribution and sojourn time distribution,respectively.展开更多
This paper considers a discrete-time Geo/G/1 queue in a multi-phase service environment,where the system is subject to disastrous breakdowns, causing all present customers to leave the system simultaneously. At a fail...This paper considers a discrete-time Geo/G/1 queue in a multi-phase service environment,where the system is subject to disastrous breakdowns, causing all present customers to leave the system simultaneously. At a failure epoch, the server abandons the service and the system undergoes a repair period. After the system is repaired, it jumps to operative phase i with probability qi, i = 1, 2 ···, n.Using the supplementary variable technique, we obtain the distribution for the stationary queue length at the arbitrary epoch, which are then used for the computation of other performance measures. In addition, we derive the expected length of a cycle time, the generating function of the sojourn time of an arbitrary customer, and the generating function of the server’s working time in a cycle. We also give the relationship between the discrete-time queueing system to its continuous-time counterpart. Finally,some examples and numerical results are presented.展开更多
基金Supported by the National Natural Science Foundation of China(71571127)the Opening Fund of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things(2023WZJ02)。
文摘This paper proposes a new discrete-time Geo/G/1 queueing model under the control of bi-level randomized(p,N1,N2)-policy.That is,the server is closed down immediately when the system is empty.If N1(≥1)customers are accumulated in the queue,the server is activated for service with probability p(0≤p≤1)or still left off with probability(1−p).When the number of customers in the system becomes N_(2)(≥N1),the server begins serving the waiting customers until the system becomes empty again.For the model,firstly,we obtain the transient solution of the queue size distribution and the explicit recursive formulas of the stationary queue length distribution by employing the total probability decomposition technique.Then,the expressions of its probability generating function of the steady-state queue size and the expected steady-state queue size are presented.Additionally,numerical examples are conducted to discuss the effect of the system parameters on some performance indices.Furthermore,the steady-state distribution of queue length at epochs n−,n and outside observer’s observation epoch are explored,respectively.Finally,we establish a cost function to investigate the cost optimization problem under the constraint of the average waiting time.And the presented model provides a less expected cost as compared to the traditional N-policy.
基金This work was supported by the National Natural Science Foundation of China(No.61174160)Post-Doctoral Science Foundation of Central South University(No.125011)The authors are grateful to the three anonymous referees and the editor for their careful reading and invaluable comments and suggestions,which are helpful to improve the paper.This research completed when the first author was a post-doctoral fellow in School of Mathematics,Central South University。
文摘In this paper we study a Geo/T-IPH/1 queue model,where T-IPH denotes the discrete time phase type distribution defined on a birth-and-death process with countably many states.The queue model can be described by a quasi-birth-anddeath(QBD)process with countably phases.Using the operator-geometric solution method,we first give the expression of the operator and the joint stationary distribution.Then we obtain the probability generating function(PGF)for stationary queue length distribution and sojourn time distribution,respectively.
基金Supported by the National Natural Science Foundation of China(61773014)
文摘This paper considers a discrete-time Geo/G/1 queue in a multi-phase service environment,where the system is subject to disastrous breakdowns, causing all present customers to leave the system simultaneously. At a failure epoch, the server abandons the service and the system undergoes a repair period. After the system is repaired, it jumps to operative phase i with probability qi, i = 1, 2 ···, n.Using the supplementary variable technique, we obtain the distribution for the stationary queue length at the arbitrary epoch, which are then used for the computation of other performance measures. In addition, we derive the expected length of a cycle time, the generating function of the sojourn time of an arbitrary customer, and the generating function of the server’s working time in a cycle. We also give the relationship between the discrete-time queueing system to its continuous-time counterpart. Finally,some examples and numerical results are presented.