The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are imm...The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are immunological,and others associated as idiopathic,are undiagnosed by all possible means.Some of the rare diseases are congenital in nature,passing from the parent to the child.Many of the undiagnosed diseases are now being diagnosed as genetic and the genes have been implicated as a causative agent.There is a search for newer treatments for such diseases,which is called genomic medicine.Genomic medicine is an emerging medical discipline that involves the use of genomic information about an individual.This is used both for diagnostic as well as therapeutic decisions to improve the current health domain and pave the way for policymakers for its clinical use.In the developing era of precision medicine,genomics,epigenomics,environmental exposure,and other data would be used to more accurately guide individual diagnosis and treatment.Genomic medicine is already making an impact in the fields of oncology,pharmacology,rare,infectious and many undiagnosed diseases.It is beginning to fuel new approaches in certain medical specialties.Oncology is at the leading edge of incorporating genomics,as diagnostics for genetic and genomic markers are increasingly included in cancer screening,and to guide tailored treatment strategies.Genetics and genetic medicine have been reported to play a role in gastroenterology in several ways,including genetic testing(hereditary pancreatitis and hereditary gastrointestinal cancer syndromes).Genetic testing can also help subtype diseases,such as classifying pancreatitis as idiopathic or hereditary.Gene therapy is a promising approach for treating gastrointestinal diseases that are not effectively treated by conventional pharmaceuticals and surgeries.Gene therapy strategies include gene addition,gene editing,messenger RNA therapy,and gene silencing.Understanding genetic determinants,advances in genetics,have led to a better understanding of the genetic factors that contribute to human disease.Family-member risk stratification and genetic diagnosis can help identify family members who are at risk,which can lead to preventive treatments,lifestyle recommendations,and routine follow ups.Selecting target genes helps identify the gene targets associated with each gastrointestinal disease.Common gastrointestinal diseases associated with genetic abnormalities include-inflammatory bowel disease,gastroesophageal reflux disease,non-alcoholic fatty liver disease,and irritable bowel syndrome.With advancing tools and technology,research in the search of newer and individualized treatment,genes and genetic medicines are expected to play a significant role in human health and gastroenterology.展开更多
Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Ge...Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Genetic variants that regulate gene expression,known as expression quantitative trait loci(eQTL),are primarily shaped by human migration history and evolutionary forces,likewise,regulation of gene expression in principle could have been influenced by these events.Therefore,a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped.Recent studies,however,suggest that eQTL is enriched in genes that are selectively constrained.Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations.In addition,such studies are primarily dominated by the major populations of European ancestry,leaving many marginalized populations underrepresented.These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity,which potentially hinders precision medicine.This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective,subsequently discuss their influence on phenomics,as well as challenges and opportunities in the applications to precision medicine.展开更多
Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on...Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on T7 RNA polymerase.Full-length cDNA of the LN16-A strain was constructed by assembling 5 cDNA fragments between the T7 promoter and hepatitis delta virus ribozyme.Transfection of this plasmid,along with the supporting plasmids encoding the N,P,M2-1,and L proteins of LN16-A into BSR-T7/5 cells,resulted in the recovery of aMPV subtype B.To identify an effective insertion site,the enhanced green fluorescent protein(EGFP)gene was inserted into different sites of the LN16-A genome to generate recombinant LN16-As.The results showed that the expression levels of EGFP at the site between the G and L genes of LN16-A were significantly higher than those at the other two sites(between the leader and N genes or replacing the SH gene).To verify the availability of the site between G and L for foreign gene expression,the VP2 gene of very virulent infectious bursal disease virus(vvIBDV)was inserted into this site,and recombinant LN16-A(rLN16A-vvVP2)was successfully rescued.Single immunization of specificpathogen-free chickens with rLN16A-vvVP2 induced high levels of neutralizing antibodies and provided 100%protection against the virulent aMPV subtype B and vvIBDV.Establishing a reverse genetics system here provides an important foundation for understanding aMPV pathogenesis and developing novel vector vaccines.展开更多
Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular a...Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular and cellular disturbances,including reduced nitric oxide bioavailability,persistent low-grade inflammation,oxidative stress,endothelial dysfunction,altered mineral metabolism,genetic predispositions,and uremic toxin accumulation.As current pharmacological treatments provide only partial risk reduction,complementary approaches are imperative.Exercise training,both aerobic and resistance,has emerged as a potent non-pharmacological intervention targeting these underlying molecular pathways.Regular exercise can enhance nitric oxide signaling,improve antioxidant defenses,attenuate inflammation,facilitate endothelial repair via endothelial progenitor cells,and stabilize muscle metabolism.Additionally,accumulating evidence points to a genetic dimension in CKD susceptibility and progression.Variants in genes such as APOL1,PKD1,PKD2,UMOD,and COL4A3–5 shape disease onset and severity,and may modulate response to interventions.Exercise may help buffer these genetic risks by inducing epigenetic changes,improving mitochondrial function,and optimizing crosstalk between muscle,adipose tissue,and the vasculature.This review synthesizes how exercise training can ameliorate key molecular mediators in CKD,emphasizing the interplay with genetic and epigenetic factors.We integrate evidence from clinical and experimental studies,discussing how personalized exercise prescriptions,informed by patients’genetic backgrounds and nutritional strategies(such as adequate protein intake),could enhance outcomes.Although large-scale trials linking molecular adaptations to long-term endpoints are needed,current knowledge strongly supports incorporating exercise as a cornerstone in CKD management to counteract pervasive molecular derangements and leverage genetic insights for individualized care.展开更多
2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究...2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究由福建省农业科学院茶叶研究所与中国农业科学院农业基因组研究所等多家单位合作完成。本研究通过对茶树及其近缘种的基因组进行深度重测序,构建了全面的茶树基因组遗传变异图谱,进而揭示了茶树的遗传多样性及其驯化状态。其结果为茶树的遗传进化和精准设计育种提供了有益见解以及重要参考资料。展开更多
Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of I...Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of IBD commonly occurs during adolescence.Despite the significant number of cases globally(~5 million),the causes of pediatric IBD,which constitutes 25%of IBD patients,are not yet fully understood.Apart from environmental factors,genetic factors contribute to a higher risk of developing IBD.The predisposition risk of IBD can be investigated using genetic testing.Genetic mechanisms of pediatric IBD are highly complex which resulted in difficulty in selecting effective treatment or patient management.Genetic variation of IBD would serve as a basis for precision medicine and allow for the discovery of more robust treatment avenues for this condition in pediatric patients.This review aims to discuss the genetics of pediatric IBD,and current development in the screening,diagnosis,and treatment based on genetic profiling of pediatric IBD subjects toward more personalized management of this disease.展开更多
Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancre...Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas.Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5%annually worldwide.The daily responsibility,clinical management,and vigilance required to maintain blood sugar levels within normal range and avoid acute complications(hypoglycemic episodes and diabetic ketoacidosis)and long term micro-and macro-vascular complications significantly affects quality of life and public health care costs.Given the expansive impact of T1D,research work has accelerated and T1D has been intensively investigated with the focus to better understand,manage and cure this condition.Many advances have been made in the past decades in this regard,but key questions remain as to why certain people develop T1D,but not others,with the glaring example of discordant disease incidence among monozygotic twins.In this review,we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D.We examine the potential implications of these findings with an emphasis on T1D inheritance patterns,twin studies,and disease prevention.Through a better understanding of this process,interventions can be developed to prevent or halt it at early stages.展开更多
[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analy...[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analyzing the herbicide whether existing in potential toxicity to aquatic organisms or not. Based on the study of acute toxicity, genetics toxicity was carried out, by calculating the micronucleus rate to judge bensulfuron-methyl herbicide whether existing in potential toxicity or not. [ Result ] The LD5o (24 h and 48 h) of bensulfuron-methyl herbicide are 0.698 ml/L and 0.637 ml/L respectively, the safe concentration was 0.159 ml/L. The results on the effects of micronucleus (MN) in erythrocytes of Danio redo induced by bensulfuron-methyl at different times and different concentrations showed that the MN rate of control group was 0.010 3%, the highest MN rate of experimental group reached to 0. 372%, it also indicated that bensulfuron-methyl herbicide had genetics toxicity to Danio redo. At the same detection time, there was dose-effect relationship of MN rate in erythrocytes between treatment and control groups with different concentrations. In the same treatment group, the MN rate in erythrocytes reached to peak value at 24 h, and decreased at 48 h and 72 h with the infection time was prolonged. [ Conclusion ] The study provides some basis for scientifically selecting and reasonably using herbicide.展开更多
Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations ...Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations in DNA mismatch repair(MMR)genes,including MLH1,MSH2,MSH6 and PMS2.These mutations lead to microsatellite instability(MSI)and defective DNA repair mechanisms,resulting in increased cancer risk.Early detection of LS is crucial for effective management and cancer prevention.Endoscopic surveillance,particularly regular colonoscopy,is recommended for individuals with LS to detect CRC at early stages.Additionally,universal screening of CRC for MMR deficiency can help identify at-risk individuals.Genetic counseling plays a valuable role in LS by guiding patients and their families in understanding the genetic basis,making informed decisions regarding surveillance and prevention,and offering reproductive options to reduce the transmission of pathogenic variants of the offspring.The aim of this review is to outline current strategies for the diagnosis,surveillance,and management of LS,with a focus on the role of genetic counseling,endoscopic screening,and emerging therapeutic approaches to mitigate cancer risk in affected individuals.展开更多
Hainan Island is one of the largest islands in China and is located in the Indo-Burma biodiversity hotspot region.Despite its ecological significance,comprehensive population genetic studies of key marine organisms al...Hainan Island is one of the largest islands in China and is located in the Indo-Burma biodiversity hotspot region.Despite its ecological significance,comprehensive population genetic studies of key marine organisms along the entire coastline of Hainan Island have not been reported.This study examined the genetic diversity and population structure of the widely distributed oyster Saccostrea malabonensis around Hainan Island with analyzing mitochondrial COI gene sequences.The impacts of geographical,environmental and anthropogenic factors on genetic differentiation were also investigated.The results revealed a significant AT bias in the COI gene sequences,with transitions as the main mutation type.A total of 103 variable sites and 107 haplotypes were identified from480 COI sequences,with haplotype diversities from 0.067 to 0.782,and nucleotide diversities between 0.00011 and 0.00278.AMOVA analysis indicated that 86.65%of the variation occurred within one population while 13.35%among different populations.The average genetic distance across 16 populations was 0.00169,and the average genetic differentiation index was 0.13353.Distinct population patterns can be observed.The populations of Tonghai Village(THV)and Gangmen Mountain(GMM)in Lingshui showed similar genetic structures while those of Wanquan River Estuary(WQRE,Qionghai)and Wuzhizhou Island(WZZI,Sanya)displayed divergent evolutionary trends.Cluster analysis grouped the 480 individuals of S.malabonensis into six subpopulations.These findings are helpful for developing conservation strategies and genetic breeding programs,and are also helpful for understanding the evolutionary history of this oyster species in Hainan Island.展开更多
Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genet...Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genetics,medicine,law,philosophy,psychology,sociology,anthropology,insurance,and economics,which have all contributed to the study of genetic information,and discrimination based on genetic traits.With this in mind,we are able to set this research study into perspective.We make no claim on behalf of any field of study.Nevertheless,we say the development in the field of genetics is in its infancy and that knowledge of an individual genome would be essential not only for counseling but could also be used for stigmatization and discrimination.The purpose of the study is to help provide useful links concerning legal and ethical issues in human genetics and particularly where it deals with the laws,regulations,and policies concerning genetic information.We deal with the legal and ethical aspects in human genetics that influence genetic information.We examine government policies and the existing legislation in Papua New Guinea(PNG)that deal with genetic information and analyze discrimination cases due to genetic traits and describe its magnitude in PNG.This study places importance on the examination of qualitative data collected by a questionnaire survey from individual subjects representing various organizations in PNG including Department of Health,Insurance companies,General Federation of Employers’Associations,Trade Unions,and professional workers such as lawyers,District Court magistrates,medical doctors,healthcare workers,students,and private individuals.The study was conducted in towns in PNG although the majority of the participants live in the National Capital District.A sample of individuals(patients)were enrolled in a cross-sectional questionnaire survey.Individual information was obtained to describe the situation of the area.However,this study did not use administrative records based on health information from the Department of Health which describes the prevalence of genetically disordered individuals.All selected individuals or subjects were interviewed or completed a questionnaire.The data were assessed to characterize the study subsets.The findings of this study are made available to clinical practice in law,medical and public health,and private and public institutions including insurance companies,employers’federation,mining companies,and workers’unions in PNG,and academics and researchers.Educational programs on the basic principles of genetics,ethics,and law in relation to insurance will have to be developed to improve the knowledge of insurance,medical,and the cost of long-term care.展开更多
Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This r...Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This review summarizes the research advances in this field,with a focus on the genetic and nutritional foundations that regulate intramuscular fat(IMF)deposition and meat quality in chickens over the past decade.The effects of embryonic nutrition,both maternal nutrition and in ovo feeding(IOF),on skeletal muscle development,the IMF content,and meat quality traits in broilers are also discussed.In genetics,single-cell RNA sequencing revealed that de novo lipogenesis predominantly occurs in myocytes,which is key to the formation of IMF in chicken muscle tissue.Fatty acid synthase(FASN)is the key enzyme involved in this process.This discovery has reshaped the traditional understanding of intramuscular lipid metabolism in poultry.Key genes,proteins,and pathways,such as FASN,FABP4,PPARG,C/EBPα,SLC27A1;LPL,APOA1,COL1A1;PPAR and ECM–receptor interactions signaling,have been identified to regulate IMF content and distribution by modulating fatty acid metabolism and adipogenesis.LncHLFF was innovatively found to promote ectopic IMF deposition in chickens via exosome-mediated mechanisms without affecting abdominal fat deposition.MiR-27b-3p and miR-128-3p were found to inhibit adipogenic differentiation by targeting PPARG,thereby affecting IMF formation.In nutrition,nutrigenomics research has shown that fructose enhances IMF deposition by activating ChREBP,providing new targets for nutritional interventions.Adjusting dietary components,including energy,protein,amino acids,fatty acids,and phytochemicals(e.g.,rutin),has been shown to significantly improve meat quality in broilers.Maternal nutrition(e.g.,intake of energy,amino acids,vitamins,and trace elements)and IOF(e.g.,N-carbamylglutamate)have also been confirmed to significantly impact offspring meat quality,opening new avenues for improving embryonic nutrition.Based on these significant advancements,this review proposes strategies that integrate genetic and nutritional approaches.These strategies aim to modulate the differentiation fate of paraxial mesenchymal stem cells toward myogenic or adipogenic lineages and the interaction between muscle and adipose tissues.These insights would help to improve meat quality while ensuring the growth performance of broiler chickens.展开更多
Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as corona...Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as coronary artery disease,myocardial infarction,stroke,are the leading causes of morbidity and mortality among diabetic patients.The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases.To date,the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge.In the future,this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients.This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.展开更多
The clinical course of Crohn's disease and ulcerative colitis is highly variable between patients,and this has therapeutic implications.A number of clinical features have been identified,which predict a mild or mo...The clinical course of Crohn's disease and ulcerative colitis is highly variable between patients,and this has therapeutic implications.A number of clinical features have been identified,which predict a mild or more severe outcome.However,several of these are subjective and/or not persistent over time.With the progress in genetics research in inflammatory bowel disease(IBD),genetic markers are increasingly being proposed to improve stratification of patients.Genetics have the major advantage of being stable over time and not prone to subjective interpretation.Nevertheless,none of the genetic variants associated with particular outcomes have shown sufficient sensitivity or specificity to have been implemented in daily management.Along the same line of thinking,pharmacogenetics or the study of association between variability in drug response and genetic variation has also received more attention as part of the endeavor for personalized medicine.The ultimate goal in this area of medicine is to adapt medication to a patient's specific genetic background and therefore improve on efficacy and safety rates.Although pharmacogenetic studies have been performed for all classes of drugs applied in IBD,few have generated consistent findings or have been replicated.The only genetic test approved for clinical practice is thiopurine S-methyltransferase testing prior to starting treatment with thiopurine analogues.The other reported associations have suffered from lack of confirmation or still need replication efforts.Nevertheless,the importance and necessity of pharmacogenetic studies will increase further as more therapeutic classes are being developed.展开更多
In 2018, we will celebrate the 40th anniversary of Genetics Society of China (GSC), which was founded in Nanjing, China in October, 1978, soon after China adopted an open door policy for reform. One major mission of...In 2018, we will celebrate the 40th anniversary of Genetics Society of China (GSC), which was founded in Nanjing, China in October, 1978, soon after China adopted an open door policy for reform. One major mission of GSC during its inception was to publish a genetics journal, aiming to provide a window for Chinese geneticists to showcase their new discoveries. In fact, a genetics journal named Acta Genetica Sinica (AGS) had been published since June of 1974 (Fig. 1 ). This journal published two issues in its first year in Chinese. The first issue covered breeding and genetics of several crop plants, including wheat, tobacco, maize, octoploid triticale, peanut and upland cotton, protoplast isolation and fusion, observation of cell nuclei during mouse spermatogenesis, derivation of early season rice, etiology and pathogenesis of favism, a good collection of Chinese genetic studies then.展开更多
Recent debate among the experts of cancer research regarding the main causes of carcinogenesis encouraged us to review the etiology of cancer pathogenesis. The somatic mutation theory attributes carcinogenesis to rand...Recent debate among the experts of cancer research regarding the main causes of carcinogenesis encouraged us to review the etiology of cancer pathogenesis. The somatic mutation theory attributes carcinogenesis to random errors in DNA multiplication while the tissue organization field theory ascribes causation to environmental factors. We recognize complexity in cancer pathogenesis and accept the premise of both DNA multiplication errors and environmental factors in cancer development. Furthermore, it should also be noted that the combination of these factors and the relative importance of the each differ in various types of cancers. For example, in some cancers, genetics plays a prominent role while in others environment such as obesity plays a much stronger role. Additionally, the cancer mitigating factors should also be considered. The balance of cancer-enhancing and cancer-suppressing forces determines the cancer incidence. Ultimately, identifying the lifestyle factors that revise somatic mutations or epigenetic alterations will lead to a clear understanding of pathogenic mechanisms of cancer and to the optimal preventive strategies. This narrative review evaluates the published evidence on carcinogenesis pertaining to the whole organism(thus, holistic) incorporating genetics, epigenetics, immunology, inflammation and infections with emphasis on oral infections.展开更多
High temperature stress is one of major abiotic stresses limiting rice productivity,especially at the flowering period.Understanding mechanisms of rice adaptation to heat stress would facilitate the development of hea...High temperature stress is one of major abiotic stresses limiting rice productivity,especially at the flowering period.Understanding mechanisms of rice adaptation to heat stress would facilitate the development of heat-tolerance cultivars for improving yield in a warmer world.Rice heat stress responses are very complex.Interactions between structure,function and the environment need to be investigated at the apparent and molecular levels in order to obtain a full picture.In this review,we summarized the current knowledge on the morphology and genetic basis of heat tolerance in reproductive tissues of rice at the flowering time,and some morphologic characters for increasing thermotolerance in rice via conventional breeding are outlined.展开更多
Neuropsychiatric disorders(NPDs) constitute a heavyburden on public health systems around the world and studies have demonstrated that the negative impact of NPDs is larger in Low and Middle Income Countries(LMICs). I...Neuropsychiatric disorders(NPDs) constitute a heavyburden on public health systems around the world and studies have demonstrated that the negative impact of NPDs is larger in Low and Middle Income Countries(LMICs). In recent decades, several studies have come to the understanding that genetic factors play a major role in the risk for a large number of NPDs. However, few neuropsychiatric genetics studies have been published from LMICs. In this Editorial, we discuss important issues impinging on advances in neuropsychiatric genetics research in LMICs. It is essential that scientists educate policymakers and officials of funding agencies on the importance of providing adequate funding for research in these areas. Development of local well-supported research programs focused on NPD genetics should be an important asset to develop; it would facilitate the establishment of sustainable research efforts that could lead to appropriate diagnosis and specific, affordable and feasible interventions in LMICs. It is important to point out that research into the biological basis of human NPDs is not only an academic effort reserved for a few elite institutions in economically developed countries, but it is vitally important for the mental health of people around the world.展开更多
文摘The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are immunological,and others associated as idiopathic,are undiagnosed by all possible means.Some of the rare diseases are congenital in nature,passing from the parent to the child.Many of the undiagnosed diseases are now being diagnosed as genetic and the genes have been implicated as a causative agent.There is a search for newer treatments for such diseases,which is called genomic medicine.Genomic medicine is an emerging medical discipline that involves the use of genomic information about an individual.This is used both for diagnostic as well as therapeutic decisions to improve the current health domain and pave the way for policymakers for its clinical use.In the developing era of precision medicine,genomics,epigenomics,environmental exposure,and other data would be used to more accurately guide individual diagnosis and treatment.Genomic medicine is already making an impact in the fields of oncology,pharmacology,rare,infectious and many undiagnosed diseases.It is beginning to fuel new approaches in certain medical specialties.Oncology is at the leading edge of incorporating genomics,as diagnostics for genetic and genomic markers are increasingly included in cancer screening,and to guide tailored treatment strategies.Genetics and genetic medicine have been reported to play a role in gastroenterology in several ways,including genetic testing(hereditary pancreatitis and hereditary gastrointestinal cancer syndromes).Genetic testing can also help subtype diseases,such as classifying pancreatitis as idiopathic or hereditary.Gene therapy is a promising approach for treating gastrointestinal diseases that are not effectively treated by conventional pharmaceuticals and surgeries.Gene therapy strategies include gene addition,gene editing,messenger RNA therapy,and gene silencing.Understanding genetic determinants,advances in genetics,have led to a better understanding of the genetic factors that contribute to human disease.Family-member risk stratification and genetic diagnosis can help identify family members who are at risk,which can lead to preventive treatments,lifestyle recommendations,and routine follow ups.Selecting target genes helps identify the gene targets associated with each gastrointestinal disease.Common gastrointestinal diseases associated with genetic abnormalities include-inflammatory bowel disease,gastroesophageal reflux disease,non-alcoholic fatty liver disease,and irritable bowel syndrome.With advancing tools and technology,research in the search of newer and individualized treatment,genes and genetic medicines are expected to play a significant role in human health and gastroenterology.
基金supported by the Ministry of Higher Education(MOHE)Malaysia through Fundamental Research Grant Scheme(FRGS)with project code:FRGS/1/2021/STG01/UCSI/01/.SX was funded by the National Natural Science Foundation of China(NSFC)grants 32030020 and 32288101funded by the NSFC grant 32270665.
文摘Evidence has shown that differential transcriptomic profiles among human populations from diverse ancestries,supporting the role of genetic architecture in regulating gene expression alongside environmental stimuli.Genetic variants that regulate gene expression,known as expression quantitative trait loci(eQTL),are primarily shaped by human migration history and evolutionary forces,likewise,regulation of gene expression in principle could have been influenced by these events.Therefore,a comprehensive understanding of how human evolution impacts eQTL offers important insights into how phenotypic diversity is shaped.Recent studies,however,suggest that eQTL is enriched in genes that are selectively constrained.Whether eQTL is minimally affected by selective pressures remains an open question and requires comprehensive investigations.In addition,such studies are primarily dominated by the major populations of European ancestry,leaving many marginalized populations underrepresented.These observations indicate there exists a fundamental knowledge gap in the role of genomics variation on phenotypic diversity,which potentially hinders precision medicine.This article aims to revisit the abundance of eQTL across diverse populations and provide an overview of their impact from the population and evolutionary genetics perspective,subsequently discuss their influence on phenomics,as well as challenges and opportunities in the applications to precision medicine.
基金supported by the grants from the National Key Research and Development Program of China(2022YFD1800604)the China Agriculture Research System(CARS-41)the Heilongjiang Touyan Innovation Team Program,China。
文摘Avian metapneumovirus(aMPV),a paramyxovirus,causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.This study established a reverse genetics system for aMPV subtype B LN16-A strain based on T7 RNA polymerase.Full-length cDNA of the LN16-A strain was constructed by assembling 5 cDNA fragments between the T7 promoter and hepatitis delta virus ribozyme.Transfection of this plasmid,along with the supporting plasmids encoding the N,P,M2-1,and L proteins of LN16-A into BSR-T7/5 cells,resulted in the recovery of aMPV subtype B.To identify an effective insertion site,the enhanced green fluorescent protein(EGFP)gene was inserted into different sites of the LN16-A genome to generate recombinant LN16-As.The results showed that the expression levels of EGFP at the site between the G and L genes of LN16-A were significantly higher than those at the other two sites(between the leader and N genes or replacing the SH gene).To verify the availability of the site between G and L for foreign gene expression,the VP2 gene of very virulent infectious bursal disease virus(vvIBDV)was inserted into this site,and recombinant LN16-A(rLN16A-vvVP2)was successfully rescued.Single immunization of specificpathogen-free chickens with rLN16A-vvVP2 induced high levels of neutralizing antibodies and provided 100%protection against the virulent aMPV subtype B and vvIBDV.Establishing a reverse genetics system here provides an important foundation for understanding aMPV pathogenesis and developing novel vector vaccines.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(grant number:NRF-2022R1A2C1092743).
文摘Chronic kidney disease(CKD)affects a significant fraction of the global population and is closely associated with elevated cardiovascular risk and poor clinical outcomes.Its pathophysiology entails complex molecular and cellular disturbances,including reduced nitric oxide bioavailability,persistent low-grade inflammation,oxidative stress,endothelial dysfunction,altered mineral metabolism,genetic predispositions,and uremic toxin accumulation.As current pharmacological treatments provide only partial risk reduction,complementary approaches are imperative.Exercise training,both aerobic and resistance,has emerged as a potent non-pharmacological intervention targeting these underlying molecular pathways.Regular exercise can enhance nitric oxide signaling,improve antioxidant defenses,attenuate inflammation,facilitate endothelial repair via endothelial progenitor cells,and stabilize muscle metabolism.Additionally,accumulating evidence points to a genetic dimension in CKD susceptibility and progression.Variants in genes such as APOL1,PKD1,PKD2,UMOD,and COL4A3–5 shape disease onset and severity,and may modulate response to interventions.Exercise may help buffer these genetic risks by inducing epigenetic changes,improving mitochondrial function,and optimizing crosstalk between muscle,adipose tissue,and the vasculature.This review synthesizes how exercise training can ameliorate key molecular mediators in CKD,emphasizing the interplay with genetic and epigenetic factors.We integrate evidence from clinical and experimental studies,discussing how personalized exercise prescriptions,informed by patients’genetic backgrounds and nutritional strategies(such as adequate protein intake),could enhance outcomes.Although large-scale trials linking molecular adaptations to long-term endpoints are needed,current knowledge strongly supports incorporating exercise as a cornerstone in CKD management to counteract pervasive molecular derangements and leverage genetic insights for individualized care.
文摘2025年3月17日,国际顶级学术期刊《自然·遗传学》(Nature Genetics)刊发题为“Genomic analysis of 1325 Camellia accessions sheds light on agronomic and metabolic traits for tea plant improvement”的研究性论文。该研究由福建省农业科学院茶叶研究所与中国农业科学院农业基因组研究所等多家单位合作完成。本研究通过对茶树及其近缘种的基因组进行深度重测序,构建了全面的茶树基因组遗传变异图谱,进而揭示了茶树的遗传多样性及其驯化状态。其结果为茶树的遗传进化和精准设计育种提供了有益见解以及重要参考资料。
文摘Pediatric inflammatory bowel disease(IBD)is a chronic and heterogeneous disease.IBD is commonly classified into Crohn’s disease and ulcerative colitis.It is linked to serious symptoms and complications.The onset of IBD commonly occurs during adolescence.Despite the significant number of cases globally(~5 million),the causes of pediatric IBD,which constitutes 25%of IBD patients,are not yet fully understood.Apart from environmental factors,genetic factors contribute to a higher risk of developing IBD.The predisposition risk of IBD can be investigated using genetic testing.Genetic mechanisms of pediatric IBD are highly complex which resulted in difficulty in selecting effective treatment or patient management.Genetic variation of IBD would serve as a basis for precision medicine and allow for the discovery of more robust treatment avenues for this condition in pediatric patients.This review aims to discuss the genetics of pediatric IBD,and current development in the screening,diagnosis,and treatment based on genetic profiling of pediatric IBD subjects toward more personalized management of this disease.
文摘Type 1 diabetes(T1D)is an autoimmune disease that usually strikes early in life,but can affect individuals at almost any age.It is caused by autoreactive T cells that destroy insulin-producing beta cells in the pancreas.Epidemiological studies estimate a prevalence of 1 in 300 children in the United States with an increasing incidence of 2%-5%annually worldwide.The daily responsibility,clinical management,and vigilance required to maintain blood sugar levels within normal range and avoid acute complications(hypoglycemic episodes and diabetic ketoacidosis)and long term micro-and macro-vascular complications significantly affects quality of life and public health care costs.Given the expansive impact of T1D,research work has accelerated and T1D has been intensively investigated with the focus to better understand,manage and cure this condition.Many advances have been made in the past decades in this regard,but key questions remain as to why certain people develop T1D,but not others,with the glaring example of discordant disease incidence among monozygotic twins.In this review,we discuss the field’s current understanding of its pathophysiology and the role of genetics and environment on the development of T1D.We examine the potential implications of these findings with an emphasis on T1D inheritance patterns,twin studies,and disease prevention.Through a better understanding of this process,interventions can be developed to prevent or halt it at early stages.
文摘[Objective] The aim was to study the effect of bensulfuron-methyl herbicide on acute toxicity and genetics toxicity of Danio redo. [ Method] Median lethal concentration was calculated by acute toxicity test, and analyzing the herbicide whether existing in potential toxicity to aquatic organisms or not. Based on the study of acute toxicity, genetics toxicity was carried out, by calculating the micronucleus rate to judge bensulfuron-methyl herbicide whether existing in potential toxicity or not. [ Result ] The LD5o (24 h and 48 h) of bensulfuron-methyl herbicide are 0.698 ml/L and 0.637 ml/L respectively, the safe concentration was 0.159 ml/L. The results on the effects of micronucleus (MN) in erythrocytes of Danio redo induced by bensulfuron-methyl at different times and different concentrations showed that the MN rate of control group was 0.010 3%, the highest MN rate of experimental group reached to 0. 372%, it also indicated that bensulfuron-methyl herbicide had genetics toxicity to Danio redo. At the same detection time, there was dose-effect relationship of MN rate in erythrocytes between treatment and control groups with different concentrations. In the same treatment group, the MN rate in erythrocytes reached to peak value at 24 h, and decreased at 48 h and 72 h with the infection time was prolonged. [ Conclusion ] The study provides some basis for scientifically selecting and reasonably using herbicide.
文摘Lynch syndrome(LS),also known as hereditary non-polyposis colorectal cancer(HNPCC),is an inherited condition associated with a higher risk of colorectal cancer(CRC)and other cancers.It is caused by germline mutations in DNA mismatch repair(MMR)genes,including MLH1,MSH2,MSH6 and PMS2.These mutations lead to microsatellite instability(MSI)and defective DNA repair mechanisms,resulting in increased cancer risk.Early detection of LS is crucial for effective management and cancer prevention.Endoscopic surveillance,particularly regular colonoscopy,is recommended for individuals with LS to detect CRC at early stages.Additionally,universal screening of CRC for MMR deficiency can help identify at-risk individuals.Genetic counseling plays a valuable role in LS by guiding patients and their families in understanding the genetic basis,making informed decisions regarding surveillance and prevention,and offering reproductive options to reduce the transmission of pathogenic variants of the offspring.The aim of this review is to outline current strategies for the diagnosis,surveillance,and management of LS,with a focus on the role of genetic counseling,endoscopic screening,and emerging therapeutic approaches to mitigate cancer risk in affected individuals.
基金the Hainan Provincial Natural Science Foundation of China(No.325RC675)the Starting Research Fund from the Hainan University(No.KYQD(ZR)-21004)。
文摘Hainan Island is one of the largest islands in China and is located in the Indo-Burma biodiversity hotspot region.Despite its ecological significance,comprehensive population genetic studies of key marine organisms along the entire coastline of Hainan Island have not been reported.This study examined the genetic diversity and population structure of the widely distributed oyster Saccostrea malabonensis around Hainan Island with analyzing mitochondrial COI gene sequences.The impacts of geographical,environmental and anthropogenic factors on genetic differentiation were also investigated.The results revealed a significant AT bias in the COI gene sequences,with transitions as the main mutation type.A total of 103 variable sites and 107 haplotypes were identified from480 COI sequences,with haplotype diversities from 0.067 to 0.782,and nucleotide diversities between 0.00011 and 0.00278.AMOVA analysis indicated that 86.65%of the variation occurred within one population while 13.35%among different populations.The average genetic distance across 16 populations was 0.00169,and the average genetic differentiation index was 0.13353.Distinct population patterns can be observed.The populations of Tonghai Village(THV)and Gangmen Mountain(GMM)in Lingshui showed similar genetic structures while those of Wanquan River Estuary(WQRE,Qionghai)and Wuzhizhou Island(WZZI,Sanya)displayed divergent evolutionary trends.Cluster analysis grouped the 480 individuals of S.malabonensis into six subpopulations.These findings are helpful for developing conservation strategies and genetic breeding programs,and are also helpful for understanding the evolutionary history of this oyster species in Hainan Island.
文摘Information about whether genetic information requires special treatment in law varies around the world and many aspects are not clear.In this study,we draw upon knowledge gained from various disciplines,such as genetics,medicine,law,philosophy,psychology,sociology,anthropology,insurance,and economics,which have all contributed to the study of genetic information,and discrimination based on genetic traits.With this in mind,we are able to set this research study into perspective.We make no claim on behalf of any field of study.Nevertheless,we say the development in the field of genetics is in its infancy and that knowledge of an individual genome would be essential not only for counseling but could also be used for stigmatization and discrimination.The purpose of the study is to help provide useful links concerning legal and ethical issues in human genetics and particularly where it deals with the laws,regulations,and policies concerning genetic information.We deal with the legal and ethical aspects in human genetics that influence genetic information.We examine government policies and the existing legislation in Papua New Guinea(PNG)that deal with genetic information and analyze discrimination cases due to genetic traits and describe its magnitude in PNG.This study places importance on the examination of qualitative data collected by a questionnaire survey from individual subjects representing various organizations in PNG including Department of Health,Insurance companies,General Federation of Employers’Associations,Trade Unions,and professional workers such as lawyers,District Court magistrates,medical doctors,healthcare workers,students,and private individuals.The study was conducted in towns in PNG although the majority of the participants live in the National Capital District.A sample of individuals(patients)were enrolled in a cross-sectional questionnaire survey.Individual information was obtained to describe the situation of the area.However,this study did not use administrative records based on health information from the Department of Health which describes the prevalence of genetically disordered individuals.All selected individuals or subjects were interviewed or completed a questionnaire.The data were assessed to characterize the study subsets.The findings of this study are made available to clinical practice in law,medical and public health,and private and public institutions including insurance companies,employers’federation,mining companies,and workers’unions in PNG,and academics and researchers.Educational programs on the basic principles of genetics,ethics,and law in relation to insurance will have to be developed to improve the knowledge of insurance,medical,and the cost of long-term care.
基金funded by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(Project No.U21A20253)2115 Talent Development Program of China Agricultural University.
文摘Chicken meat quality directly influences consumer acceptability and is crucial for the economic success of the poultry industry.Genetics and nutrition are key determinants of the meat quality traits in broilers.This review summarizes the research advances in this field,with a focus on the genetic and nutritional foundations that regulate intramuscular fat(IMF)deposition and meat quality in chickens over the past decade.The effects of embryonic nutrition,both maternal nutrition and in ovo feeding(IOF),on skeletal muscle development,the IMF content,and meat quality traits in broilers are also discussed.In genetics,single-cell RNA sequencing revealed that de novo lipogenesis predominantly occurs in myocytes,which is key to the formation of IMF in chicken muscle tissue.Fatty acid synthase(FASN)is the key enzyme involved in this process.This discovery has reshaped the traditional understanding of intramuscular lipid metabolism in poultry.Key genes,proteins,and pathways,such as FASN,FABP4,PPARG,C/EBPα,SLC27A1;LPL,APOA1,COL1A1;PPAR and ECM–receptor interactions signaling,have been identified to regulate IMF content and distribution by modulating fatty acid metabolism and adipogenesis.LncHLFF was innovatively found to promote ectopic IMF deposition in chickens via exosome-mediated mechanisms without affecting abdominal fat deposition.MiR-27b-3p and miR-128-3p were found to inhibit adipogenic differentiation by targeting PPARG,thereby affecting IMF formation.In nutrition,nutrigenomics research has shown that fructose enhances IMF deposition by activating ChREBP,providing new targets for nutritional interventions.Adjusting dietary components,including energy,protein,amino acids,fatty acids,and phytochemicals(e.g.,rutin),has been shown to significantly improve meat quality in broilers.Maternal nutrition(e.g.,intake of energy,amino acids,vitamins,and trace elements)and IOF(e.g.,N-carbamylglutamate)have also been confirmed to significantly impact offspring meat quality,opening new avenues for improving embryonic nutrition.Based on these significant advancements,this review proposes strategies that integrate genetic and nutritional approaches.These strategies aim to modulate the differentiation fate of paraxial mesenchymal stem cells toward myogenic or adipogenic lineages and the interaction between muscle and adipose tissues.These insights would help to improve meat quality while ensuring the growth performance of broiler chickens.
基金Supported by Ministry of Science and Higher Education of the Russian Federation within the Applied Science Research Program,No.AAAA-A20-120041390028-0Estonia-Russia Cross Border Cooperation Programme 2014-2020,No.ER24.
文摘Type 2 diabetes mellitus(T2DM)is a metabolic disorder that currently affects more than 400 million worldwide and is projected to cause 552 million cases by the year 2030.Long-term vascular complications,such as coronary artery disease,myocardial infarction,stroke,are the leading causes of morbidity and mortality among diabetic patients.The recent advances in genome-wide technologies have given a powerful impetus to the study of risk markers for multifactorial diseases.To date,the role of genetic and epigenetic factors in modulating susceptibility to T2DM and its vascular complications is being successfully studied that provides the accumulation of genomic knowledge.In the future,this will provide an opportunity to reveal the pathogenetic pathways in the development of the disease and allow to predict the macrovascular complications in T2DM patients.This review is focused on the evidence of the role of genetic variants and epigenetic changes in the development of macrovascular pathology in diabetic patients.
文摘The clinical course of Crohn's disease and ulcerative colitis is highly variable between patients,and this has therapeutic implications.A number of clinical features have been identified,which predict a mild or more severe outcome.However,several of these are subjective and/or not persistent over time.With the progress in genetics research in inflammatory bowel disease(IBD),genetic markers are increasingly being proposed to improve stratification of patients.Genetics have the major advantage of being stable over time and not prone to subjective interpretation.Nevertheless,none of the genetic variants associated with particular outcomes have shown sufficient sensitivity or specificity to have been implemented in daily management.Along the same line of thinking,pharmacogenetics or the study of association between variability in drug response and genetic variation has also received more attention as part of the endeavor for personalized medicine.The ultimate goal in this area of medicine is to adapt medication to a patient's specific genetic background and therefore improve on efficacy and safety rates.Although pharmacogenetic studies have been performed for all classes of drugs applied in IBD,few have generated consistent findings or have been replicated.The only genetic test approved for clinical practice is thiopurine S-methyltransferase testing prior to starting treatment with thiopurine analogues.The other reported associations have suffered from lack of confirmation or still need replication efforts.Nevertheless,the importance and necessity of pharmacogenetic studies will increase further as more therapeutic classes are being developed.
文摘In 2018, we will celebrate the 40th anniversary of Genetics Society of China (GSC), which was founded in Nanjing, China in October, 1978, soon after China adopted an open door policy for reform. One major mission of GSC during its inception was to publish a genetics journal, aiming to provide a window for Chinese geneticists to showcase their new discoveries. In fact, a genetics journal named Acta Genetica Sinica (AGS) had been published since June of 1974 (Fig. 1 ). This journal published two issues in its first year in Chinese. The first issue covered breeding and genetics of several crop plants, including wheat, tobacco, maize, octoploid triticale, peanut and upland cotton, protoplast isolation and fusion, observation of cell nuclei during mouse spermatogenesis, derivation of early season rice, etiology and pathogenesis of favism, a good collection of Chinese genetic studies then.
基金Supported by Helsinki University Hospital funds,NoTYH2015323(to Meurman JH)
文摘Recent debate among the experts of cancer research regarding the main causes of carcinogenesis encouraged us to review the etiology of cancer pathogenesis. The somatic mutation theory attributes carcinogenesis to random errors in DNA multiplication while the tissue organization field theory ascribes causation to environmental factors. We recognize complexity in cancer pathogenesis and accept the premise of both DNA multiplication errors and environmental factors in cancer development. Furthermore, it should also be noted that the combination of these factors and the relative importance of the each differ in various types of cancers. For example, in some cancers, genetics plays a prominent role while in others environment such as obesity plays a much stronger role. Additionally, the cancer mitigating factors should also be considered. The balance of cancer-enhancing and cancer-suppressing forces determines the cancer incidence. Ultimately, identifying the lifestyle factors that revise somatic mutations or epigenetic alterations will lead to a clear understanding of pathogenic mechanisms of cancer and to the optimal preventive strategies. This narrative review evaluates the published evidence on carcinogenesis pertaining to the whole organism(thus, holistic) incorporating genetics, epigenetics, immunology, inflammation and infections with emphasis on oral infections.
基金Supported by the National Key Technology Research and Development Program(2012BAD20B00)~~
文摘High temperature stress is one of major abiotic stresses limiting rice productivity,especially at the flowering period.Understanding mechanisms of rice adaptation to heat stress would facilitate the development of heat-tolerance cultivars for improving yield in a warmer world.Rice heat stress responses are very complex.Interactions between structure,function and the environment need to be investigated at the apparent and molecular levels in order to obtain a full picture.In this review,we summarized the current knowledge on the morphology and genetic basis of heat tolerance in reproductive tissues of rice at the flowering time,and some morphologic characters for increasing thermotolerance in rice via conventional breeding are outlined.
基金Supported by Research grants from VCTI-UAN and Colcienciasresearch grants from Universidad del Rosario
文摘Neuropsychiatric disorders(NPDs) constitute a heavyburden on public health systems around the world and studies have demonstrated that the negative impact of NPDs is larger in Low and Middle Income Countries(LMICs). In recent decades, several studies have come to the understanding that genetic factors play a major role in the risk for a large number of NPDs. However, few neuropsychiatric genetics studies have been published from LMICs. In this Editorial, we discuss important issues impinging on advances in neuropsychiatric genetics research in LMICs. It is essential that scientists educate policymakers and officials of funding agencies on the importance of providing adequate funding for research in these areas. Development of local well-supported research programs focused on NPD genetics should be an important asset to develop; it would facilitate the establishment of sustainable research efforts that could lead to appropriate diagnosis and specific, affordable and feasible interventions in LMICs. It is important to point out that research into the biological basis of human NPDs is not only an academic effort reserved for a few elite institutions in economically developed countries, but it is vitally important for the mental health of people around the world.