Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are imm...The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are immunological,and others associated as idiopathic,are undiagnosed by all possible means.Some of the rare diseases are congenital in nature,passing from the parent to the child.Many of the undiagnosed diseases are now being diagnosed as genetic and the genes have been implicated as a causative agent.There is a search for newer treatments for such diseases,which is called genomic medicine.Genomic medicine is an emerging medical discipline that involves the use of genomic information about an individual.This is used both for diagnostic as well as therapeutic decisions to improve the current health domain and pave the way for policymakers for its clinical use.In the developing era of precision medicine,genomics,epigenomics,environmental exposure,and other data would be used to more accurately guide individual diagnosis and treatment.Genomic medicine is already making an impact in the fields of oncology,pharmacology,rare,infectious and many undiagnosed diseases.It is beginning to fuel new approaches in certain medical specialties.Oncology is at the leading edge of incorporating genomics,as diagnostics for genetic and genomic markers are increasingly included in cancer screening,and to guide tailored treatment strategies.Genetics and genetic medicine have been reported to play a role in gastroenterology in several ways,including genetic testing(hereditary pancreatitis and hereditary gastrointestinal cancer syndromes).Genetic testing can also help subtype diseases,such as classifying pancreatitis as idiopathic or hereditary.Gene therapy is a promising approach for treating gastrointestinal diseases that are not effectively treated by conventional pharmaceuticals and surgeries.Gene therapy strategies include gene addition,gene editing,messenger RNA therapy,and gene silencing.Understanding genetic determinants,advances in genetics,have led to a better understanding of the genetic factors that contribute to human disease.Family-member risk stratification and genetic diagnosis can help identify family members who are at risk,which can lead to preventive treatments,lifestyle recommendations,and routine follow ups.Selecting target genes helps identify the gene targets associated with each gastrointestinal disease.Common gastrointestinal diseases associated with genetic abnormalities include-inflammatory bowel disease,gastroesophageal reflux disease,non-alcoholic fatty liver disease,and irritable bowel syndrome.With advancing tools and technology,research in the search of newer and individualized treatment,genes and genetic medicines are expected to play a significant role in human health and gastroenterology.展开更多
Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we develop...Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we developed a bacterial type-II toxin-antitoxin-mediated method to manipulate genomic integration of tandem gene repeats in Saccharomyces cerevisiae and further visualised the evolutionary trajectories of gene repeats.We designed a tri-vector system to introduce toxin-antitoxin-driven gene amplification modules.Results:This system delivered multi-copy gene integration in the form of tandem gene repeats spontaneously and independently from toxin-antitoxin-mediated selection.Inducing the toxin(RelE)expressing via a copper(II)-inducible CUP1 promoter successfully drove the in-situ gene amplification of the antitoxin(RelB)module,resulting in~40 copies of a green fluorescence reporter gene per copy of genome.Copy-number changes,copy-number increase and copy-number decrease,and stable maintenance were visualised using the green fluorescence protein and blue chromoprotein AeBlue as reporters.Copy-number increases happened spontaneously and independent on a selection pressure.Increased copy number was quickly enriched through toxin-antitoxin-mediated selection.Conclusion:In summary,the bacterial toxin-antitoxin systems provide a flexible mechanism to manipulate gene copy number in eukaryotic cells and can be exploited for synthetic biology and metabolic engineering applications.展开更多
BACKGROUND Familial adenomatous polyposis(FAP)is a disorder of autosomal dominant inheritance that is responsible for around 1%of colorectal cancer(CRC)cases.AIM To determine the mutation profile of FAP-specific to th...BACKGROUND Familial adenomatous polyposis(FAP)is a disorder of autosomal dominant inheritance that is responsible for around 1%of colorectal cancer(CRC)cases.AIM To determine the mutation profile of FAP-specific to the Hungarian population.METHODS This prospective single-center study enrolled patients with clinically suspected FAP or attenuated FAP(aFAP).Whole-exome next-generation sequencing was performed to detect variants of 50 FAP priority genes and 173 CRC predisposing genes or other CRC disease-associated genes.To identify larger deletions and insertions,a multiplex amplifiable probe hybridization technique was used.The identified genes were then classified according to the American College of Medical Genetics and Genomics guidelines.RESULTS A total of 26 index patients with clinically suspected FAP(n=21)and aFAP(n=5)were enrolled.APC gene alterations were confirmed in 92.31%of the cases(region 1B deletion,n=2;whole-gene deletion,n=4;frameshift mutation,n=2;nonsense mutation,n=5,and splice mutation,n=1),with the remaining two cases having CHEK2 and MSH3 gene alterations.According to pathogenicity,21 cases had pathogenic mutations,6 cases had likely pathogenic mutations,and 16 cases had variants of unknown significance(VUS).The most frequent of the latter were the POLE(n=5)and PIEZO1(n=4)gene variants.CONCLUSION Germline mutations in the APC gene were confirmed in more than 90%of Hungarian patients with clinically suspected FAP.Although the role of VUS genes is unclear,they are highly likely to play a role in the development of CRC.展开更多
Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as ...Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as Epstein-Barr virus infection-the familial aggregation demonstrated in large population studies suggested a genetic predisposition.First-degree relatives of patients with HL have an approximately threefold increased risk of developing the disease compared to the general population.These observations have recently prompted several whole-genome studies in affected families,identifying variants possibly implicated in lymphomagenesis,including alterations in DICER1(a member of the ribonuclease III family),POT1(protection of telomeres 1),KDR(kinase insert domain receptor),KLHDC8B(kelch domain-containing protein 8B),PAX5(paired box protein 5),GATA3(GATA binding protein 3),IRF7(interferon regulatory factor 7),EEF2KMT(eukaryotic elongation factor 2 lysine methyltransferase),and POLR1E(RNA polymerase I subunit E).In this article,we review current insights into the etiopathogenesis and risks of familial HL,and present case reports involving two sisters diagnosed with HL nearly 17 years apart.Recognizing the risk for first-degree relatives may potentially increase awareness of early symptoms among family members of HL patients,leading to earlier diagnosis and better outcomes.Conversely,understanding that the hereditary risk,though higher than in the general population,remains relatively low may provide reassurance for affected families.展开更多
Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and...Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and exhibits high genetic diversity,corresponding to the geographical distribution of its seven principal distinct clades across West Africa[1].LASV was first isolated in 1969 from an American missionary nurse stationed in the rural town of Lassa,Borno State,Nigeria,following her return from a brief vacation in the United States[2].展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity le...Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity levels among different populations of tree peony varieties.The results showed that 34 bands were amplified using five pairs of cp SSR primers,with an average of 6.8 bands per primer pair.The average number of different alleles(N_(a)),effective alleles(N_(e)),Shannon's information index(I),diversity(H),and polymorphic information content(PIC)were 3.600,2.053,0.708,0.433,and 0.388,respectively.The PIC value was between 0.250 and 0.500,indicating a moderate level of polymorphism for the five cp SSR primer pairs.The genetic diversity levels of peony cultivars varied among different populations,with the Northwest population showing relatively lower levels(I=0.590,H=0.289,and PIC=0.263).A total of 52 haplotypes were identified in the four examined populations,and the number of haplotypes per population ranged from 11 to 22.Forty-four private haplotypes were detected across populations,and the Northwest population exhibiting the highest count of private haplotypes with 17.The mean number of effective number of haplotypes(N_(eh)),haplotypic richness(R_(h)),and diversity(H)were 8.351,6.824,and 0.893,respectively.Analysis of molecular variance indicated that genetic variation within tree peony germplasm was greater than that between germplasm resources,and the main variation was found within individuals of peony germplasm.Cluster analysis,principal coordinate analysis,and genetic structure analysis classified tree peonies from different origins into two groups,indicating a certain degree of genetic differentiation among these four tree peony cultivation groups.This study provides a theoretical basis for the exploration,utilization,and conservation of peony germplasm resources,as well as for research on the breeding of excellent varieties.展开更多
Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herb...Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.展开更多
Gerbera,a popular commercial cut flower with vibrant and striking colors has gained immense popularity in the floriculture industry.They are widely cultivated in various regions,making them available throughout the ye...Gerbera,a popular commercial cut flower with vibrant and striking colors has gained immense popularity in the floriculture industry.They are widely cultivated in various regions,making them available throughout the year.As a better alternative to conventional propagation methods(via seeds and rhizomes),plant tissue culture serves as way to avail large-scale,uniform,disease-free plantlets for commercial cultivation as well as to develop novel genotypes.In addition,it ensures production of healthy plantlets throughout the year in limited space.Based on the plant tissue culture techniques,the in vitro polyploidization,mutagenesis,and genetic transformation pave a path for creation of variation and eventually enhancing the ornamental traits to address the consumers’preferences and also facilitates in developing stress tolerant lines thereby minimizing the losses during cultivation,maintaining the quality of the flowers.This comprehensive review article presents an overview of the recent advancements on genetic improvement of gerbera via various cutting-edge plant tissue culture-based tools and techniques that contribute in enhancing the quality and efficiency of gerbera cultivation,meeting the demands of the floriculture industry while addressing the challenges of changing environment and resource limitations.展开更多
Anthracnose is a devastating disease caused by Colletotrichum that significantly affects the yield and economic value of the tea plant(Camellia sinensis). However, few studies have addressed the genetic mechanism of a...Anthracnose is a devastating disease caused by Colletotrichum that significantly affects the yield and economic value of the tea plant(Camellia sinensis). However, few studies have addressed the genetic mechanism of anthracnoseresistance(AR). This study investigated the QTL associated with AR in a 'Longjing 43'×'Baijiguan'(LJ43×BJG)population. The field surveys conducted in this study led to the identification of several QTLs for AR on the linkagemap. One major QTL(qAR-12.4) accounted for 12% of the phenotypic variance explained over two years. The BSA-seq results also revealed two genomic regions, q ARChr1 on chromosome 1 and qARChr13 on chromosome 13,which showed strong correlations with AR. Time-course RNA-seq was performed on LJ43 and BJG inoculated withanthracnose at 0, 24, and 48 hours to screen for candidate genes. The results showed the gradual post-inoculationexpression of a nuclear-localized ERF transcription factor(CsERF105) within the qARChr1 locus in BJG but not inLJ43. The AR of BJG was significantly reduced after feeding with CsERF105-specific antisense oligonucleotides,suggesting that CsERF105 may be a positive regulator. The findings of this study add to our general knowledge ofthe genetic factors involved in the tea plant's AR and potential breeding targets.展开更多
Vestibular Migraine (VM) is a common neurological disorder characterized by recurrent episodes of vertigo and migraine symptoms. The pathogenesis of VM is complex and involves multiple genetic and environmental factor...Vestibular Migraine (VM) is a common neurological disorder characterized by recurrent episodes of vertigo and migraine symptoms. The pathogenesis of VM is complex and involves multiple genetic and environmental factors. Recent studies have suggested that the pathogenesis of vestibular migraine may be associated with variations in the CACNA1A gene, which is an important gene target for controlling calcium ion channels. Such variations may further affect the functions of the vestibular nervous system, thereby causing a series of vestibular nervous system-related symptoms. This article will summarize the genetic association studies of vestibular migraine, vestibular function studies, and research on how to establish relevant animal models to illustrate the possible association between CACNA1A variations and the pathogenesis of VM, providing new ideas for clarifying the pathogenesis of VM.展开更多
Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small population...Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small populations,genetic purging that occurs under the pressure of natural selection acts as an opposing force,contributing to a reduction of deleterious alleles.Both inbreeding and genetic purging are paramount in the field of conservation genomics.The Amur tiger(Panthera tigris altaica)lives in small populations in the forests of Northeast Asia and is among the most endangered animals on the planet.Using genome-wide assessment and comparison,we reveal substantially higher and more extensive inbreeding in wild Amur tigers(F_(ROH)=0.50)than in captive individuals(F_(ROH)=0.24).However,a relatively reduced number of lossof-function mutations in wild Amur tigers is observed compared to captive individuals,indicating genetic purging of inbreeding load with relatively large-effect alleles.The higher ratio of homozygous mutation load and number of fixed damaging alleles in the wild population indicates a less-efficient genetic purging,with purifying selection also contributing to this process.These findings provide valuable insights for the future conservation of Amur tigers.展开更多
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th...In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.展开更多
Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustaina...Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Preserving genetic diversity is crucial for the long-term survival of wild plant species,yet many remain at risk of genetic erosion due to small population sizes and habitat fragmentation.Here,we present a comparative...Preserving genetic diversity is crucial for the long-term survival of wild plant species,yet many remain at risk of genetic erosion due to small population sizes and habitat fragmentation.Here,we present a comparative genomic study of the critically endangered Oreocharis esquirolii(Gesneriaceae)and its widespread congener O.maximowiczii.We assembled and annotated chromosome-level reference genomes for both species and generated whole-genome resequencing data from 28 O.esquirolii and 79 O.maximowiczii individuals.Our analyses reveal substantially lower genetic diversity and higher inbreeding in O.esquirolii,despite its overall reduced mutational burden.Notably,O.esquirolii exhibits an elevated proportion of strongly deleterious mutations relative to O.maximowiczii,suggesting that limited opportunities for purging have allowed these variants to accumulate.These contrasting genomic profileslikely reflectdivergent demographic histories,with O.esquirolii having experienced severe bottlenecks and protracted population decline.Collectively,our findingshighlight the critically endangered status of O.esquirolii,characterized by diminished genetic diversity,pronounced inbreeding,and reduced ability to eliminate deleterious alleles.This study provides valuable genomic resources for the Gesneriaceae family and underscores the urgent need for targeted conservation measures,including habitat protection and ex situ preservation efforts,to mitigate the extinction risk facing O.esquirolii and potentially other threatened congeners.展开更多
Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the bat...Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.展开更多
The advent of precision medicine has underscored the importance of biomarkers in predicting therapy response for bladder cancer,a malignancy marked by considerable heterogeneity.This review critically examines the cur...The advent of precision medicine has underscored the importance of biomarkers in predicting therapy response for bladder cancer,a malignancy marked by considerable heterogeneity.This review critically examines the current landscape of biomarkers to forecast treatment outcomes in bladder cancer patients.We explore a range of biomarkers,including genetic,epigenetic,proteomic,and transcriptomic indicators,from multiple sample sources,including urine,tumor tissue and blood,assessing their efficacy in predicting responses to chemotherapy,immunotherapy,and targeted therapies.Despite promising developments,the translation of these biomarkers into clinical practice faces significant challenges,such as variability in biomarker performance,the necessity for large-scale validation studies,and the integration of biomarker testing into routine clinical workflows.We also highlight the need for standardized methodologies and robust assays to ensure consistency and reliability.Future directions point towards longitudinal studies and the development of combination biomarker panels to enhance predictive accuracy.This review emphasizes the transformative potential of predictive biomarkers in improving patient outcomes and advocates for continued collaborative efforts to overcome existing barriers in this rapidly evolving field.展开更多
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
文摘The etiopathogenesis of gastrointestinal diseases is varied in nature.Various etiogenic factors described are infective,inflammatory,viral,bacterial,parasitic,dietary and lifestyle change.Rare causative agents are immunological,and others associated as idiopathic,are undiagnosed by all possible means.Some of the rare diseases are congenital in nature,passing from the parent to the child.Many of the undiagnosed diseases are now being diagnosed as genetic and the genes have been implicated as a causative agent.There is a search for newer treatments for such diseases,which is called genomic medicine.Genomic medicine is an emerging medical discipline that involves the use of genomic information about an individual.This is used both for diagnostic as well as therapeutic decisions to improve the current health domain and pave the way for policymakers for its clinical use.In the developing era of precision medicine,genomics,epigenomics,environmental exposure,and other data would be used to more accurately guide individual diagnosis and treatment.Genomic medicine is already making an impact in the fields of oncology,pharmacology,rare,infectious and many undiagnosed diseases.It is beginning to fuel new approaches in certain medical specialties.Oncology is at the leading edge of incorporating genomics,as diagnostics for genetic and genomic markers are increasingly included in cancer screening,and to guide tailored treatment strategies.Genetics and genetic medicine have been reported to play a role in gastroenterology in several ways,including genetic testing(hereditary pancreatitis and hereditary gastrointestinal cancer syndromes).Genetic testing can also help subtype diseases,such as classifying pancreatitis as idiopathic or hereditary.Gene therapy is a promising approach for treating gastrointestinal diseases that are not effectively treated by conventional pharmaceuticals and surgeries.Gene therapy strategies include gene addition,gene editing,messenger RNA therapy,and gene silencing.Understanding genetic determinants,advances in genetics,have led to a better understanding of the genetic factors that contribute to human disease.Family-member risk stratification and genetic diagnosis can help identify family members who are at risk,which can lead to preventive treatments,lifestyle recommendations,and routine follow ups.Selecting target genes helps identify the gene targets associated with each gastrointestinal disease.Common gastrointestinal diseases associated with genetic abnormalities include-inflammatory bowel disease,gastroesophageal reflux disease,non-alcoholic fatty liver disease,and irritable bowel syndrome.With advancing tools and technology,research in the search of newer and individualized treatment,genes and genetic medicines are expected to play a significant role in human health and gastroenterology.
基金supported partially by the Australian Government through the Australian Research Council Centres of Excellence funding scheme(project CE200100029)。
文摘Background:Tandem gene repeats naturally occur as important genomic features and determine many traits in living organisms,like human diseases and microbial productivities of target bioproducts.Methods:Here,we developed a bacterial type-II toxin-antitoxin-mediated method to manipulate genomic integration of tandem gene repeats in Saccharomyces cerevisiae and further visualised the evolutionary trajectories of gene repeats.We designed a tri-vector system to introduce toxin-antitoxin-driven gene amplification modules.Results:This system delivered multi-copy gene integration in the form of tandem gene repeats spontaneously and independently from toxin-antitoxin-mediated selection.Inducing the toxin(RelE)expressing via a copper(II)-inducible CUP1 promoter successfully drove the in-situ gene amplification of the antitoxin(RelB)module,resulting in~40 copies of a green fluorescence reporter gene per copy of genome.Copy-number changes,copy-number increase and copy-number decrease,and stable maintenance were visualised using the green fluorescence protein and blue chromoprotein AeBlue as reporters.Copy-number increases happened spontaneously and independent on a selection pressure.Increased copy number was quickly enriched through toxin-antitoxin-mediated selection.Conclusion:In summary,the bacterial toxin-antitoxin systems provide a flexible mechanism to manipulate gene copy number in eukaryotic cells and can be exploited for synthetic biology and metabolic engineering applications.
基金Supported by the Research Grants of the National Research,Development and Innovation Office,No.K125377,No.K134863 and No.K143549New National Excellence Program of the Ministry of Human Capacities,No.UNKP-20-5-SZTE-161,No.UNKP-22-3-SZTE-233,No.UNKP-23-5-SZTE-719,No.UNKP-22-4-SZTE-296 and No.UNKP-22-3-SZTE-278+1 种基金Janos Bolyai Research Grant,No.BO/00723/22the Géza Hetényi Research Grant by Albert Szent-Györgyi Medical School,University of Szeged.
文摘BACKGROUND Familial adenomatous polyposis(FAP)is a disorder of autosomal dominant inheritance that is responsible for around 1%of colorectal cancer(CRC)cases.AIM To determine the mutation profile of FAP-specific to the Hungarian population.METHODS This prospective single-center study enrolled patients with clinically suspected FAP or attenuated FAP(aFAP).Whole-exome next-generation sequencing was performed to detect variants of 50 FAP priority genes and 173 CRC predisposing genes or other CRC disease-associated genes.To identify larger deletions and insertions,a multiplex amplifiable probe hybridization technique was used.The identified genes were then classified according to the American College of Medical Genetics and Genomics guidelines.RESULTS A total of 26 index patients with clinically suspected FAP(n=21)and aFAP(n=5)were enrolled.APC gene alterations were confirmed in 92.31%of the cases(region 1B deletion,n=2;whole-gene deletion,n=4;frameshift mutation,n=2;nonsense mutation,n=5,and splice mutation,n=1),with the remaining two cases having CHEK2 and MSH3 gene alterations.According to pathogenicity,21 cases had pathogenic mutations,6 cases had likely pathogenic mutations,and 16 cases had variants of unknown significance(VUS).The most frequent of the latter were the POLE(n=5)and PIEZO1(n=4)gene variants.CONCLUSION Germline mutations in the APC gene were confirmed in more than 90%of Hungarian patients with clinically suspected FAP.Although the role of VUS genes is unclear,they are highly likely to play a role in the development of CRC.
文摘Hodgkin lymphoma(HL)is a heterogenous lymphoproliferative disorder of B-cell origin and represents one of the most common malignancies in children and young adults.In addition to well-known underlying factors-such as Epstein-Barr virus infection-the familial aggregation demonstrated in large population studies suggested a genetic predisposition.First-degree relatives of patients with HL have an approximately threefold increased risk of developing the disease compared to the general population.These observations have recently prompted several whole-genome studies in affected families,identifying variants possibly implicated in lymphomagenesis,including alterations in DICER1(a member of the ribonuclease III family),POT1(protection of telomeres 1),KDR(kinase insert domain receptor),KLHDC8B(kelch domain-containing protein 8B),PAX5(paired box protein 5),GATA3(GATA binding protein 3),IRF7(interferon regulatory factor 7),EEF2KMT(eukaryotic elongation factor 2 lysine methyltransferase),and POLR1E(RNA polymerase I subunit E).In this article,we review current insights into the etiopathogenesis and risks of familial HL,and present case reports involving two sisters diagnosed with HL nearly 17 years apart.Recognizing the risk for first-degree relatives may potentially increase awareness of early symptoms among family members of HL patients,leading to earlier diagnosis and better outcomes.Conversely,understanding that the hereditary risk,though higher than in the general population,remains relatively low may provide reassurance for affected families.
文摘Lassa fever(LF)is an acute viral hemorrhagic illness caused by the Lassa virus(LASV),an enveloped,spherical virus belonging to the Arenaviridae family.LASV possess a single-stranded RNA genome of negative polarity and exhibits high genetic diversity,corresponding to the geographical distribution of its seven principal distinct clades across West Africa[1].LASV was first isolated in 1969 from an American missionary nurse stationed in the rural town of Lassa,Borno State,Nigeria,following her return from a brief vacation in the United States[2].
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by Innovation Scientists and Technicians Troop Construction Projects of Henan Province(Grant No.212101510003)the Central Plains Scholar Workstation Project(Grant No.224400510002)+1 种基金the Youth Science Foundation of Henan Province(Grant No.202300410136)the Experimental Development Foundation of Henan University of Science and Technology(Grant No.SY2324004)。
文摘Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity levels among different populations of tree peony varieties.The results showed that 34 bands were amplified using five pairs of cp SSR primers,with an average of 6.8 bands per primer pair.The average number of different alleles(N_(a)),effective alleles(N_(e)),Shannon's information index(I),diversity(H),and polymorphic information content(PIC)were 3.600,2.053,0.708,0.433,and 0.388,respectively.The PIC value was between 0.250 and 0.500,indicating a moderate level of polymorphism for the five cp SSR primer pairs.The genetic diversity levels of peony cultivars varied among different populations,with the Northwest population showing relatively lower levels(I=0.590,H=0.289,and PIC=0.263).A total of 52 haplotypes were identified in the four examined populations,and the number of haplotypes per population ranged from 11 to 22.Forty-four private haplotypes were detected across populations,and the Northwest population exhibiting the highest count of private haplotypes with 17.The mean number of effective number of haplotypes(N_(eh)),haplotypic richness(R_(h)),and diversity(H)were 8.351,6.824,and 0.893,respectively.Analysis of molecular variance indicated that genetic variation within tree peony germplasm was greater than that between germplasm resources,and the main variation was found within individuals of peony germplasm.Cluster analysis,principal coordinate analysis,and genetic structure analysis classified tree peonies from different origins into two groups,indicating a certain degree of genetic differentiation among these four tree peony cultivation groups.This study provides a theoretical basis for the exploration,utilization,and conservation of peony germplasm resources,as well as for research on the breeding of excellent varieties.
基金funded by the Key-Area Research and Development Program of Guangdong Province(Grant No.2022B0202070002)the Guangxi Science and Technology Major Program(Grant No.GuikeAA23023007-2)+1 种基金the Guangdong Province Modern Agricultural Industry Technology System Innovation Team Construction Project(2024CXTD19)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010303)。
文摘Agrobacterium tumefaciens-mediated transformation has been widely adopted for plant genetic engineering and the study of gene function(Krenek et al.,2015).This method is prevalent in the genetic transformation of herbaceous plants,with notable applications in species such as Arabidopsis(Yin et al.,2024),soybean(Zhang et al.,2024),rice(Zhang et al.,2020),and Chinese cabbage(Li et al.,2021).However,its application in fruit trees is limited.This is primarily due to their long growth cycles and lack of rapid,efficient,and stable transgenic systems,which severely hinders foundational research involving plant genetic transformation(Mei et al.,2024).Furthermore,for subtropical fruit trees,the presence of recalcitrant seeds adds an extra layer of difficulty to genetic transformation(Umarani et al.,2015),as most methods rely on seed germination as a basis for transformation.
基金funded by Department of Science&Technology and Biotechnology,Govt.of West Bengal,India[Sanction No.565(Sanc.)/STBT-13015/15/11/2021-ST SEC]。
文摘Gerbera,a popular commercial cut flower with vibrant and striking colors has gained immense popularity in the floriculture industry.They are widely cultivated in various regions,making them available throughout the year.As a better alternative to conventional propagation methods(via seeds and rhizomes),plant tissue culture serves as way to avail large-scale,uniform,disease-free plantlets for commercial cultivation as well as to develop novel genotypes.In addition,it ensures production of healthy plantlets throughout the year in limited space.Based on the plant tissue culture techniques,the in vitro polyploidization,mutagenesis,and genetic transformation pave a path for creation of variation and eventually enhancing the ornamental traits to address the consumers’preferences and also facilitates in developing stress tolerant lines thereby minimizing the losses during cultivation,maintaining the quality of the flowers.This comprehensive review article presents an overview of the recent advancements on genetic improvement of gerbera via various cutting-edge plant tissue culture-based tools and techniques that contribute in enhancing the quality and efficiency of gerbera cultivation,meeting the demands of the floriculture industry while addressing the challenges of changing environment and resource limitations.
基金supported by Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant, China (2021C02067-6)the National Key Research and Development Program of China (2021YFD1200200)+1 种基金the Fundamental Research Fund for Tea Research Institute of the Chinese Academy of Agricultural Sciences (1610212022009)the Zhejiang Provincial Natural Science Foundation, China (Z24C160010) to Chunlei Ma。
文摘Anthracnose is a devastating disease caused by Colletotrichum that significantly affects the yield and economic value of the tea plant(Camellia sinensis). However, few studies have addressed the genetic mechanism of anthracnoseresistance(AR). This study investigated the QTL associated with AR in a 'Longjing 43'×'Baijiguan'(LJ43×BJG)population. The field surveys conducted in this study led to the identification of several QTLs for AR on the linkagemap. One major QTL(qAR-12.4) accounted for 12% of the phenotypic variance explained over two years. The BSA-seq results also revealed two genomic regions, q ARChr1 on chromosome 1 and qARChr13 on chromosome 13,which showed strong correlations with AR. Time-course RNA-seq was performed on LJ43 and BJG inoculated withanthracnose at 0, 24, and 48 hours to screen for candidate genes. The results showed the gradual post-inoculationexpression of a nuclear-localized ERF transcription factor(CsERF105) within the qARChr1 locus in BJG but not inLJ43. The AR of BJG was significantly reduced after feeding with CsERF105-specific antisense oligonucleotides,suggesting that CsERF105 may be a positive regulator. The findings of this study add to our general knowledge ofthe genetic factors involved in the tea plant's AR and potential breeding targets.
文摘Vestibular Migraine (VM) is a common neurological disorder characterized by recurrent episodes of vertigo and migraine symptoms. The pathogenesis of VM is complex and involves multiple genetic and environmental factors. Recent studies have suggested that the pathogenesis of vestibular migraine may be associated with variations in the CACNA1A gene, which is an important gene target for controlling calcium ion channels. Such variations may further affect the functions of the vestibular nervous system, thereby causing a series of vestibular nervous system-related symptoms. This article will summarize the genetic association studies of vestibular migraine, vestibular function studies, and research on how to establish relevant animal models to illustrate the possible association between CACNA1A variations and the pathogenesis of VM, providing new ideas for clarifying the pathogenesis of VM.
基金supported by the Fundamental Research Funds for the Central Universities of China(2572022DQ03)the National Natural Science Foundation of China(32170517)+2 种基金the Guangdong Provincial Key Laboratory of Genome Read and Write(2017B030301011)the Start-up Scientific Foundation of Northeast Forestry University(60201524043)supported by China National GeneBank(CNGB).
文摘Inbreeding increases genome homozygosity within populations,which can exacerbate inbreeding depression by exposing homozygous deleterious alleles that are responsible for declines in fitness traits.In small populations,genetic purging that occurs under the pressure of natural selection acts as an opposing force,contributing to a reduction of deleterious alleles.Both inbreeding and genetic purging are paramount in the field of conservation genomics.The Amur tiger(Panthera tigris altaica)lives in small populations in the forests of Northeast Asia and is among the most endangered animals on the planet.Using genome-wide assessment and comparison,we reveal substantially higher and more extensive inbreeding in wild Amur tigers(F_(ROH)=0.50)than in captive individuals(F_(ROH)=0.24).However,a relatively reduced number of lossof-function mutations in wild Amur tigers is observed compared to captive individuals,indicating genetic purging of inbreeding load with relatively large-effect alleles.The higher ratio of homozygous mutation load and number of fixed damaging alleles in the wild population indicates a less-efficient genetic purging,with purifying selection also contributing to this process.These findings provide valuable insights for the future conservation of Amur tigers.
基金supported by the Natural Science Foundation of Shandong Province(nos.ZR2023MF047,ZR2024MA055 and ZR2023QF139)the Enterprise Commissioned Project(nos.2024HX104 and 2024HX140)+1 种基金the China University Industry-University-Research Innovation Foundation(nos.2021ZYA11003 and 2021ITA05032)the Science and Technology Plan for Youth Innovation of Shandong's Universities(no.2019KJN012).
文摘In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.
基金funded by the National Natural Science Foundation of China(32372546)Shenzhen Science and Technology Program(KQTD20180411143628272)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences and STI 2030-Major Projects(2022ZD04021)the National Key Research and Development Program of China(2023YFD2200700)。
文摘Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金supported by National Key R&D Program of China(2024YFF1307400)Guangdong S&T Program(2022B1111230001).
文摘Preserving genetic diversity is crucial for the long-term survival of wild plant species,yet many remain at risk of genetic erosion due to small population sizes and habitat fragmentation.Here,we present a comparative genomic study of the critically endangered Oreocharis esquirolii(Gesneriaceae)and its widespread congener O.maximowiczii.We assembled and annotated chromosome-level reference genomes for both species and generated whole-genome resequencing data from 28 O.esquirolii and 79 O.maximowiczii individuals.Our analyses reveal substantially lower genetic diversity and higher inbreeding in O.esquirolii,despite its overall reduced mutational burden.Notably,O.esquirolii exhibits an elevated proportion of strongly deleterious mutations relative to O.maximowiczii,suggesting that limited opportunities for purging have allowed these variants to accumulate.These contrasting genomic profileslikely reflectdivergent demographic histories,with O.esquirolii having experienced severe bottlenecks and protracted population decline.Collectively,our findingshighlight the critically endangered status of O.esquirolii,characterized by diminished genetic diversity,pronounced inbreeding,and reduced ability to eliminate deleterious alleles.This study provides valuable genomic resources for the Gesneriaceae family and underscores the urgent need for targeted conservation measures,including habitat protection and ex situ preservation efforts,to mitigate the extinction risk facing O.esquirolii and potentially other threatened congeners.
基金co-supported by the Fundamental Research Funds for the Central Universities,China。
文摘Effect web will be an important combat means to achieve accurate,efficient,agile and reliable destruction of enemy targets.The use of Unmanned Aerial Vehicles(UAV)cluster in warfare has become a key element in the battle for military superiority between nations.The construction of UAV cluster effect web is a kind of combinatorial optimization in essence.By selecting the optimal combination in the limited equipment concentration,the whole network can be optimized.Firstly,in order to improve the combinatorial optimization efficiency of UAV cluster effect web,NSGA-Ⅱbased on deep Q-network(DQN-based NSGA-Ⅱ)is proposed.This algorithm is used to solve the Multi-Objective Combinatorial Optimization(MOCO)problem in the construction of effect web.Secondly,a dynamic generation method is devised to solve the problem caused by the possible destruction of enemy and our node under the fierce confrontation between the two sides.Finally,the simulation results show that the DQN-based NSGA-Ⅱis better than the genetic algorithm with single operator.The comparison experiment shows that the weight of evaluation indexes will have a corresponding influence on the optimization results.
文摘The advent of precision medicine has underscored the importance of biomarkers in predicting therapy response for bladder cancer,a malignancy marked by considerable heterogeneity.This review critically examines the current landscape of biomarkers to forecast treatment outcomes in bladder cancer patients.We explore a range of biomarkers,including genetic,epigenetic,proteomic,and transcriptomic indicators,from multiple sample sources,including urine,tumor tissue and blood,assessing their efficacy in predicting responses to chemotherapy,immunotherapy,and targeted therapies.Despite promising developments,the translation of these biomarkers into clinical practice faces significant challenges,such as variability in biomarker performance,the necessity for large-scale validation studies,and the integration of biomarker testing into routine clinical workflows.We also highlight the need for standardized methodologies and robust assays to ensure consistency and reliability.Future directions point towards longitudinal studies and the development of combination biomarker panels to enhance predictive accuracy.This review emphasizes the transformative potential of predictive biomarkers in improving patient outcomes and advocates for continued collaborative efforts to overcome existing barriers in this rapidly evolving field.