With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
Precancerous lesions of gastric cancer(PLGC)are crucial for the progression to gastric cancer,and early intervention in PLGC is pivotal in preventing its development into gastric cancer.In order to illustrate the mole...Precancerous lesions of gastric cancer(PLGC)are crucial for the progression to gastric cancer,and early intervention in PLGC is pivotal in preventing its development into gastric cancer.In order to illustrate the molecular mechanisms underlying PLGC and the roles of associated genes within these lesions,genetically engineered mouse models(GEMMs)have been developed.We systematically summarize the current GEMMs,and highlight the principal pathological mechanisms involved,including gastrin/gastric acid balance,inflammatory factors,the interplay between cancer-promoting and cancer-suppressing genes,and apoptotic pathways.We further discuss the mechanisms involved in the existing GEMMs of PLGC.展开更多
Following the publication of Liu et al.(2024),an error was identified in Figure 4B,in which the image representing the lung from the E529G group was inadvertently duplicated with the image of the lung from the WT grou...Following the publication of Liu et al.(2024),an error was identified in Figure 4B,in which the image representing the lung from the E529G group was inadvertently duplicated with the image of the lung from the WT group during figure preparation.展开更多
The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new producti...The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.This article provides a comprehensive examination of the global distribution of GM crops in 2023.It discusses the internal factors that are driving their adoption,such as the increasing number of GM crops and the growing variety of commodities.This article also provides information support and application guidance for the new developments in global agricultural science and technology.展开更多
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS...Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.展开更多
The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary ...The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary to make clear the molecular genetic characteristics,edible safety,planting,processing,and other aspects of the safety evaluation of GM crops.The safety problems existing in the cultivation of GM crops,safety evaluation and detection of GM crops were introduced in this paper,which provided the basis for safety evaluation and effective supervision of GM crops and their products.Commercial cultivation and reasonable supervision based on safety evaluation have far-reaching significance for ensuring consumer safety,enhancing the credibility of the national political system and enhancing citizens'confidence in the safety of GM crop products for consumption.展开更多
Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of ce...China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.展开更多
Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection an...Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection and breeding process were introduced in the paper. Regional tests from 2010 to 2011 in Jiangsu Province showed that seed cotton yield and lint yield averaged 4 185 and 1 737 kg/hm2, and increased by 10.6% and 8.5% respectively, when compared with control (Siza 3). In production test, seed cotton yield and lint yield of Sumian 29 averaged 4 176 and 1 744.5 kg/hm2, respectively. Sumian 29 had high resistance to cotton bollworm, and also resistance to Fusarium wilt and Verticillium wilt of cotton. All of its fiber qualities achieved National Standard III and above. Sumian 29 has good application prospects.展开更多
[Objective] The study aimed at evaluating the uncertainty in measuring the construct-specific fragments of genetically modified maize MON863 by real time quantitative PCR.[Method] The content of construct-specific fra...[Objective] The study aimed at evaluating the uncertainty in measuring the construct-specific fragments of genetically modified maize MON863 by real time quantitative PCR.[Method] The content of construct-specific fragments in MON863 samples was determined by real time quantitative PCR,and then the uncertainty of measurement result was evaluated according to the sources of uncertainty like the PCR system,the data processing and the micropipette.[Result] Type A evaluation of uncertainty(uA) in the measurement was 1.7×10^-2;Type B evaluation of uncertainty(uB) was 9.0×10^-4;the combined standard uncertainty(uC) was 1.7×10^-2;the expanded uncertainty(U95) was 0.036 and the finally measured result was 1.08%±0.036.[Conclusion] The main uncertainty of the result measured by real time quantitative PCR came from the randomizing effect in the experimental process.展开更多
DEAR EDITOR, Genetically improved farmed tilapia (GIFT)and GIFT-derived strains account for the majority of farmed tilapia worldwide.As male tilapias grow much faster than females,they are often considered more desira...DEAR EDITOR, Genetically improved farmed tilapia (GIFT)and GIFT-derived strains account for the majority of farmed tilapia worldwide.As male tilapias grow much faster than females,they are often considered more desirable in the aquacultural industry.Sex reversal of females to males using the male sex hormone 17-α-methyltestosterone (MT)is generally used to induce phenotypic males during large-scale production of all male fingerlings.However,the widespread use of large quantities of sex reversal hormone in hatcheries may pose a health risk to workers and ecological threats to surrounding environments. Breeding procedures to produce genetically all-male tilapia with limited or no use of sex hormones are therefore urgently needed.展开更多
Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were...Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.展开更多
In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama ambly...In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama amblycephala) was analyzed using 17 microsatellite markers. The results showed that an average of 4.88-7.65 number of alleles (A); an average of 3.20-5.33 effective alleles (Ne); average observed beterozygosity (Ho) of 0.6985-0.9044; average expected beterozygosity (He) of 0.6501--0.7805; and the average polymorphism information content (PIC) at 0.5706-0.7226. Pairwise FST value between populations ranged from 0.0307-0.1451, and Nei's standard genetic distance between populations was 0.0938-0.4524. The expected heterozygosities in the domesticated populations (GA and HX) were significantly lower than those found in three wild populations (LZ, SS and JL), but no difference was detected when compared with the wild YN population. Likewise, no difference was found between the four wild populations or two domesticated populations. The expected heterozygosity in Pujiang No. 1 was higher than the two domesticated populations and lower than the four wild populations. Regarding pairwise Fsr value between populations, permutation test P-values were significant between the GA, HX and PJ populations, but not between the four wild populations. These results showed that the expected beterozygosity in the selected strain of blunt snout bream, after seven generations of selective breeding, was lower than that of wild populations, but this strain retains higher levels of genetic diversity than domesticated populations. The genetic differences and differentiation amongst wild populations, domesticated populations and the genetically improved strain of blunt snout bream will provide important conservation criteria and guide the utilization of germplasm resources.展开更多
A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegr...A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.展开更多
An experiment was conducted to investigate the requirement of nonphytate phosphorus(nPP) and efficacy of a genetically engineered yeast phytase(PHY A) for Lingnan yellow broilers from 22-to 42-d-old age.A total of...An experiment was conducted to investigate the requirement of nonphytate phosphorus(nPP) and efficacy of a genetically engineered yeast phytase(PHY A) for Lingnan yellow broilers from 22-to 42-d-old age.A total of 1 320 1-d-old male chicks were randomly divided into 11 dietary treatment groups,which consisted of 4 replicate floor pens with 30 birds per pen.The control group(treatment 1) was fed with basal diet of nPP 0.08% without dicalcium phosphate or phytase supplementation.Dietary levels of nPP were 0.16,0.24,0.32,0.40,0.48,and 0.56%,respectively,for treatments 2 to 7,through addition of dicalcium phosphate(chemistry grade) to the basal diet.Diets of treatments 8 to 11 were supplemented with PHY A at 200,400 and 600 U kg-1,a commercial phytase product(PHY B) at 400 U kg-1 level,respectively.The birds in 0.32-0.56% nPP groups gained more than those of the other groups(P0.05).The nPP supplementation significantly improved feed intake(P0.05).The feed gain ratio was significantly decreased by 0.40% nPP diet compared to the control birds(P0.05).The level of 0.48% nPP was required for optimum tibia development.The additions of PHY A at 400 and 600 U kg-1 level and PHY B all significantly improved ADG(P0.05),ADFI(P0.05),and dry defatted tibia weight(P0.05).Similarly,the percentage of tibia ash was increased by 600 U kg-1 PHY A supplementation(P0.05).The requirement of nPP for maximal ADG and highest percentage tibia ash both was 0.40%.The phosphorus equivalency value of PHY A was estimated as 685 U kg-1 for male yellow broilers of 22-to 42-d-old age.展开更多
The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neur...The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.展开更多
Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy...Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adi- pocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein lc (SREBP-lc), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α(PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-lc, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.展开更多
Objective To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Methods Female mice weighing 18-22 g were divided into five groups (10 mice/group), which ...Objective To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Methods Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%} for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. Results No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. Conclusion From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat.展开更多
Objective To compare the ileal digestibility of protein and amino acids in parental rice and rice genetically modified with sck gene. Methods Six experimental swines were surgically fixed with a simple T-cannula at th...Objective To compare the ileal digestibility of protein and amino acids in parental rice and rice genetically modified with sck gene. Methods Six experimental swines were surgically fixed with a simple T-cannula at the terminal ileum and fed with parental rice and rice genetically modified with sck gene alternately. The ileum digesta were collected and analyzed for determination of apparent and true digestibility of protein and amino acids. Results The apparent and true digestibility of protein was similar in these two types of rice. Except for the apparent digestibility of lysine, there was no difference in the apparent and true digestibility of the other 17 amino acids. Conclusion The digestibility of protein and amino acids is not changed by the insertion of foreign gene, so it can meet the request of "substantial equivalence" in digestibility of protein and amino acids.展开更多
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金Supported by the National Administration of Traditional Chinese Medicine National Superior Specialty Project of Traditional Chinese Medicine,No.[2024]90Shanghai Municipal Administrator of Traditional Chinese Medicine Policy Letter[2024],No.20+1 种基金Science and Technology Development Fund of Shanghai University of Traditional Chinese Medicine,No.23KFL102Shuguang Hospital Siming Foundation Research Special Project,No.SGKJ-202304。
文摘Precancerous lesions of gastric cancer(PLGC)are crucial for the progression to gastric cancer,and early intervention in PLGC is pivotal in preventing its development into gastric cancer.In order to illustrate the molecular mechanisms underlying PLGC and the roles of associated genes within these lesions,genetically engineered mouse models(GEMMs)have been developed.We systematically summarize the current GEMMs,and highlight the principal pathological mechanisms involved,including gastrin/gastric acid balance,inflammatory factors,the interplay between cancer-promoting and cancer-suppressing genes,and apoptotic pathways.We further discuss the mechanisms involved in the existing GEMMs of PLGC.
文摘Following the publication of Liu et al.(2024),an error was identified in Figure 4B,in which the image representing the lung from the E529G group was inadvertently duplicated with the image of the lung from the WT group during figure preparation.
基金supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences。
文摘The commercialization of genetically modified(GM)crops has increased food production,improved crop quality,reduced pesticide use,promoted changes in agricultural production methods,and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.This article provides a comprehensive examination of the global distribution of GM crops in 2023.It discusses the internal factors that are driving their adoption,such as the increasing number of GM crops and the growing variety of commodities.This article also provides information support and application guidance for the new developments in global agricultural science and technology.
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
基金supported by the National Natural Science Foundation (NSF)of China:JSK (32071137 and 92054103)Funding for Scientific Research and Innovation Team of The First Affliated Hospital of Zhengzhou University:JSK (ZYCXTD2023014)。
文摘Mitochondrial membrane potential(MMP)plays a crucial role in the function of cells and organelles,involving various cellular physiological processes,including energy production,formation of reactive oxygen species(ROS),unfolded protein stress,and cell survival.Currently,there is a lack of genetically encoded fluorescence indicators(GEVIs)for MMP.In our screening of various GEVIs for their potential monitoring MMP,the Accelerated Sensor of Action Potentials(ASAP)demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types.However,mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes.Therefore,two ASAP mutants resistant to ROS were generated.A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence.Overall,four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4(MPI-1-4).In vivo,fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
基金Supported by the China Postdoctoral Science Foundation(2023M730312)the Science and Technology Plan Projects of the State Administration for Market Regulation(2022MK002)the National Key Research and Development Program(2022YFF0606105)。
文摘The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary to make clear the molecular genetic characteristics,edible safety,planting,processing,and other aspects of the safety evaluation of GM crops.The safety problems existing in the cultivation of GM crops,safety evaluation and detection of GM crops were introduced in this paper,which provided the basis for safety evaluation and effective supervision of GM crops and their products.Commercial cultivation and reasonable supervision based on safety evaluation have far-reaching significance for ensuring consumer safety,enhancing the credibility of the national political system and enhancing citizens'confidence in the safety of GM crop products for consumption.
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金co-supported by the National Natural Science Foundation of China(Grant No.31470311)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.20136101130001).
文摘China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.
基金Supported by the S&T Support Program of Jiangsu Province(BE2013380)the Agricultural Science and Technology Innovation Program of Jiangsu Province(CX(12)3068)the Key Program for Genetically Modified Organism Breeding(2012ZX-08013009-003)~~
文摘Sumian 29, a genetically modified cotton variety, was approved by Autho- rized Committee of Crop Varieties of Jiangsu Province in 2013. Yield performance, cultivation characteristics of Sumian 29, and its selection and breeding process were introduced in the paper. Regional tests from 2010 to 2011 in Jiangsu Province showed that seed cotton yield and lint yield averaged 4 185 and 1 737 kg/hm2, and increased by 10.6% and 8.5% respectively, when compared with control (Siza 3). In production test, seed cotton yield and lint yield of Sumian 29 averaged 4 176 and 1 744.5 kg/hm2, respectively. Sumian 29 had high resistance to cotton bollworm, and also resistance to Fusarium wilt and Verticillium wilt of cotton. All of its fiber qualities achieved National Standard III and above. Sumian 29 has good application prospects.
基金Supported by the Fund from Sichuan Academy of Agricultural Sciences for Distinguished Young Scholars (2009QNJJ-037)a Grantfor Adventive Species Monitoring from Ministry of Agriculture~~
文摘[Objective] The study aimed at evaluating the uncertainty in measuring the construct-specific fragments of genetically modified maize MON863 by real time quantitative PCR.[Method] The content of construct-specific fragments in MON863 samples was determined by real time quantitative PCR,and then the uncertainty of measurement result was evaluated according to the sources of uncertainty like the PCR system,the data processing and the micropipette.[Result] Type A evaluation of uncertainty(uA) in the measurement was 1.7×10^-2;Type B evaluation of uncertainty(uB) was 9.0×10^-4;the combined standard uncertainty(uC) was 1.7×10^-2;the expanded uncertainty(U95) was 0.036 and the finally measured result was 1.08%±0.036.[Conclusion] The main uncertainty of the result measured by real time quantitative PCR came from the randomizing effect in the experimental process.
基金supported by the Special Fund for Marine Fisheries-Scientific Research of Guangdong Province(A201501A04)Science and Technology Program of Guangzhou,China(201803020043)+1 种基金National Natural Science Foundation of China(31572612)Science and Technology Planning Project of Guangdong Province,China(2017A030303008)
文摘DEAR EDITOR, Genetically improved farmed tilapia (GIFT)and GIFT-derived strains account for the majority of farmed tilapia worldwide.As male tilapias grow much faster than females,they are often considered more desirable in the aquacultural industry.Sex reversal of females to males using the male sex hormone 17-α-methyltestosterone (MT)is generally used to induce phenotypic males during large-scale production of all male fingerlings.However,the widespread use of large quantities of sex reversal hormone in hatcheries may pose a health risk to workers and ecological threats to surrounding environments. Breeding procedures to produce genetically all-male tilapia with limited or no use of sex hormones are therefore urgently needed.
基金National Basic Research Program of China (No. 2001CB109001)National High-Tech Research Program of China (No. 2002AA212041)
文摘Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.
基金supported by the National Natural Science Foundation of China(30630051)Doctoral Research Initial Funding from Shanghai Ocean University(A-2400-11-0186)
文摘In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama amblycephala) was analyzed using 17 microsatellite markers. The results showed that an average of 4.88-7.65 number of alleles (A); an average of 3.20-5.33 effective alleles (Ne); average observed beterozygosity (Ho) of 0.6985-0.9044; average expected beterozygosity (He) of 0.6501--0.7805; and the average polymorphism information content (PIC) at 0.5706-0.7226. Pairwise FST value between populations ranged from 0.0307-0.1451, and Nei's standard genetic distance between populations was 0.0938-0.4524. The expected heterozygosities in the domesticated populations (GA and HX) were significantly lower than those found in three wild populations (LZ, SS and JL), but no difference was detected when compared with the wild YN population. Likewise, no difference was found between the four wild populations or two domesticated populations. The expected heterozygosity in Pujiang No. 1 was higher than the two domesticated populations and lower than the four wild populations. Regarding pairwise Fsr value between populations, permutation test P-values were significant between the GA, HX and PJ populations, but not between the four wild populations. These results showed that the expected beterozygosity in the selected strain of blunt snout bream, after seven generations of selective breeding, was lower than that of wild populations, but this strain retains higher levels of genetic diversity than domesticated populations. The genetic differences and differentiation amongst wild populations, domesticated populations and the genetically improved strain of blunt snout bream will provide important conservation criteria and guide the utilization of germplasm resources.
文摘A azoreductase gene with 537 bp was obtained by PCR amplification from Rhodobacter sphaeroides AS1 1737 The enzyme, with a molecular weight of 18 7 kD, was efficiently expressed in Escherichia coli and its biodegradation characteristics for azo dyes were investigated. Furthermore, the reaction kinetics and mechanism of azo dyes catalyzed by the genetically engineered azoreductase were studied in detail. The presence of a hydrazo-intermediate was identified, which provided a convincing evidence for the assumption that azo dyes were degraded via an incomplete reduction stage.
基金supported by the the Earmarked Fund for Modern Agro-Industry Technology Research System,China (nycytx-42-G2-01)the grant from Ministry of Agriculture of China (nyhyzx07-038)
文摘An experiment was conducted to investigate the requirement of nonphytate phosphorus(nPP) and efficacy of a genetically engineered yeast phytase(PHY A) for Lingnan yellow broilers from 22-to 42-d-old age.A total of 1 320 1-d-old male chicks were randomly divided into 11 dietary treatment groups,which consisted of 4 replicate floor pens with 30 birds per pen.The control group(treatment 1) was fed with basal diet of nPP 0.08% without dicalcium phosphate or phytase supplementation.Dietary levels of nPP were 0.16,0.24,0.32,0.40,0.48,and 0.56%,respectively,for treatments 2 to 7,through addition of dicalcium phosphate(chemistry grade) to the basal diet.Diets of treatments 8 to 11 were supplemented with PHY A at 200,400 and 600 U kg-1,a commercial phytase product(PHY B) at 400 U kg-1 level,respectively.The birds in 0.32-0.56% nPP groups gained more than those of the other groups(P0.05).The nPP supplementation significantly improved feed intake(P0.05).The feed gain ratio was significantly decreased by 0.40% nPP diet compared to the control birds(P0.05).The level of 0.48% nPP was required for optimum tibia development.The additions of PHY A at 400 and 600 U kg-1 level and PHY B all significantly improved ADG(P0.05),ADFI(P0.05),and dry defatted tibia weight(P0.05).Similarly,the percentage of tibia ash was increased by 600 U kg-1 PHY A supplementation(P0.05).The requirement of nPP for maximal ADG and highest percentage tibia ash both was 0.40%.The phosphorus equivalency value of PHY A was estimated as 685 U kg-1 for male yellow broilers of 22-to 42-d-old age.
基金supported by the National Key Research and Development Program of China(2017YFA050400 and2017YFC0906900)the National Natural Science Foundation of China(31722033,91649123,31671484,31225008,and 31470833)+4 种基金the Shanghai Science and Technology Commission(14XD1401400,16430723100,and 15YF1402600)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(to YZ)Shanghai Young Top-notch Talent(to YZ)the State Key Laboratory of Bioreactor Engineering(to YY)Fundamental Research Funds for the Central Universities(to YY and YZ)
文摘The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism under- lying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte- neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neu- ronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here,we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.
基金Project supported by the National Key Research and Development Program of China(Nos.2018YFD0500400 and 2018YFD0501100)the National Basic Research Program(973)of China(No.2013CB127304)+1 种基金the China Agriculture Research System(No.CARS-36)and the National Natural Science Foundation of China(No.31402086)
文摘Because of their physiological similarity to humans, pigs provide an excellent model for the study of obesity. This study evaluated diet-induced adiposity in genetically lean pigs and found that body weight and energy intake did not differ between controls and pigs fed the high-fat (HF) diet for three months. However, fat mass percentage, adi- pocyte size, concentrations of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), insulin, and leptin in plasma were significantly higher in HF pigs than in controls. The HF diet increased the expression in backfat tissue of genes responsible for cholesterol synthesis such as Insig-1 and Insig-2. Lipid metabolism-related genes including sterol regulatory element binding protein lc (SREBP-lc), fatty acid synthase 1 (FASN1), diacylglycerol O-acyltransferase 2 (DGAT2), and fatty acid binding protein 4 (FABP4) were significantly up-regulated in backfat tissue, while the expression of proliferator-activated receptor-α(PPAR-α) and carnitine palmitoyl transferase 2 (CPT2), both involved in fatty acid oxidation, was reduced. In liver tissue, HF feeding significantly elevated the expression of SREBP-lc, FASN1, DGAT2, and hepatocyte nuclear factor-4α (HNF-4α) mRNAs. Microarray analysis further showed that the HF diet had a significant effect on the expression of 576 genes. Among these, 108 genes were related to 21 pathways, with 20 genes involved in adiposity deposition and 26 related to immune response. Our results suggest that an HF diet can induce genetically lean pigs into obesity with body fat mass expansion and adipose-related inflammation.
基金supported by the National GMO Cultivation Major Project of New Varieties (2008ZX08011-005,2011ZX08011-005)
文摘Objective To evaluate the immunotoxicological effects of genetically modified wheat with TaDREB4 gene in female BALB/c mice. Methods Female mice weighing 18-22 g were divided into five groups (10 mice/group), which were set as negative control group, common wheat group, parental wheat group, genetically modified wheat group and cyclophosphamide positive control group, respectively. Mice in negative control group and positive control group were fed with AIN93G diet, mice in common wheat group, non-genetically modified parental wheat group and genetically modified wheat group were fed with feedstuffs added corresponding wheat (the proportion is 76%} for 30 days, then body weight, absolute and relative weight of spleen and thymus, white blood cell count, histological examination of immune organ, peripheral blood lymphocytes phenotyping, serum cytokine, serum immunoglobulin, antibody plaque-forming cell, serum half hemolysis value, mitogen-induced splenocyte proliferation, delayed-type hypersensitivity reaction and phagocytic activities of phagocytes were detected. Results No immunotoxicological effects related to the consumption of the genetically modified wheat were observed in BALB/c mice when compared with parental wheat group, common wheat group and negative control group. Conclusion From the immunotoxicological point of view, results from this study demonstrate that genetically modified wheat with TaDREB4 gene is as safe as the parental wheat.
文摘Objective To compare the ileal digestibility of protein and amino acids in parental rice and rice genetically modified with sck gene. Methods Six experimental swines were surgically fixed with a simple T-cannula at the terminal ileum and fed with parental rice and rice genetically modified with sck gene alternately. The ileum digesta were collected and analyzed for determination of apparent and true digestibility of protein and amino acids. Results The apparent and true digestibility of protein was similar in these two types of rice. Except for the apparent digestibility of lysine, there was no difference in the apparent and true digestibility of the other 17 amino acids. Conclusion The digestibility of protein and amino acids is not changed by the insertion of foreign gene, so it can meet the request of "substantial equivalence" in digestibility of protein and amino acids.