期刊文献+
共找到14,551篇文章
< 1 2 250 >
每页显示 20 50 100
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
1
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
An Improved Chicken Swarm Optimization Techniques Based on Cultural Algorithm Operators for Biometric Access Control
2
作者 Jonathan Ponmile Oguntoye Sunday Adeola Ajagbe +4 位作者 Oluyinka Titilayo Adedeji Olufemi Olayanju Awodoye Abigail Bola Adetunji Elijah Olusayo Omidiora Matthew Olusegun Adigun 《Computers, Materials & Continua》 2025年第9期5713-5732,共20页
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS... This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability. 展开更多
关键词 Access control biometric technology chicken swarm optimization cultural algorithm pattern recognition
在线阅读 下载PDF
Cat Swarm Algorithm Generated Based on Genetic Programming Framework Applied in Digital Watermarking
3
作者 Shu-Chuan Chu Libin Fu +2 位作者 Jeng-Shyang Pan Xingsi Xue Min Liu 《Computers, Materials & Continua》 2025年第5期3135-3163,共29页
Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm... Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency. 展开更多
关键词 Cat swarm algorithm genetic programming digital watermarking update mode mode generation framework
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
4
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(PSO)
在线阅读 下载PDF
Synergistic Swarm Optimization Algorithm 被引量:1
5
作者 Sharaf Alzoubi Laith Abualigah +3 位作者 Mohamed Sharaf Mohammad Sh.Daoud Nima Khodadadi Heming Jia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2557-2604,共48页
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optima... This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm. 展开更多
关键词 Synergistic swarm optimization algorithm optimization algorithm METAHEURISTIC engineering problems benchmark functions
在线阅读 下载PDF
Variational Data Assimilation Method Using Parallel Dual Populations Particle Swarm Optimization Algorithm 被引量:1
6
作者 WU Zhongjian LI Junyan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期59-66,共8页
In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optim... In recent years,numerical weather forecasting has been increasingly emphasized.Variational data assimilation furnishes precise initial values for numerical forecasting models,constituting an inherently nonlinear optimization challenge.The enormity of the dataset under consideration gives rise to substantial computational burdens,complex modeling,and high hardware requirements.This paper employs the Dual-Population Particle Swarm Optimization(DPSO)algorithm in variational data assimilation to enhance assimilation accuracy.By harnessing parallel computing principles,the paper introduces the Parallel Dual-Population Particle Swarm Optimization(PDPSO)Algorithm to reduce the algorithm processing time.Simulations were carried out using partial differential equations,and comparisons in terms of time and accuracy were made against DPSO,the Dynamic Weight Particle Swarm Algorithm(PSOCIWAC),and the TimeVarying Double Compression Factor Particle Swarm Algorithm(PSOTVCF).Experimental results indicate that the proposed PDPSO outperforms PSOCIWAC and PSOTVCF in convergence accuracy and is comparable to DPSO.Regarding processing time,PDPSO is 40%faster than PSOCIWAC and PSOTVCF and 70%faster than DPSO. 展开更多
关键词 parallel algorithm variational data assimilation dual-population particle swarm optimization algorithm diffusion mechanism
原文传递
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
7
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 Fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
在线阅读 下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
8
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
9
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning
10
作者 Weicong Tan Qiwu Wu +2 位作者 Lingzhi Jiang Tao Tong Yunchen Su 《Computers, Materials & Continua》 2025年第11期3621-3652,共32页
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ... This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts. 展开更多
关键词 Dung beetle optimizer algorithm swarm intelligence MULTI-UAV trajectory planning complex environments
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights
11
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 Particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
Bio-Inspired Algorithms in NLP Techniques:Challenges,Limitations and Its Applications
12
作者 Huu-Tuong Ho Thi-Thuy-Hoai Nguyen +1 位作者 Duong Nguyen Minh Huy Luong Vuong Nguyen 《Computers, Materials & Continua》 2025年第6期3945-3973,共29页
Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep... Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep learning models encounter challenges with optimization,parameter tuning,and handling large-scale,highdimensional data.Bio-inspired algorithms,which mimic natural processes,offer robust optimization capabilities that can enhance NLP performance by improving feature selection,optimizing model parameters,and integrating adaptive learning mechanisms.This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms(GA),Particle Swarm Optimization(PSO),and Ant Colony Optimization(ACO)—across core NLP tasks.We analyze their comparative advantages,discuss their integration with neural network models,and address computational and scalability limitations.Through a synthesis of existing research,this paper highlights the unique strengths and current challenges of bio-inspired approaches in NLP,offering insights into hybrid models and lightweight,resource-efficient adaptations for real-time processing.Finally,we outline future research directions that emphasize the development of scalable,effective bio-inspired methods adaptable to evolving data environments. 展开更多
关键词 Natural language processing BIO-INSPIRED genetic algorithms ant colony optimization particle swarm optimization
在线阅读 下载PDF
Three stage dynamic partitioning method of active distribution network based on improved sand cat swarm
13
作者 ZHANG Maosong ZHANG Luyao +3 位作者 YANG Jie YANG Lingxiao WANG Xiuqin TAO Jun 《High Technology Letters》 2025年第3期211-225,共15页
With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st... With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions. 展开更多
关键词 renewable energy consumption dynamic partition MODULARITY voltage regulation sand cat swarm algorithm overlapping nodes
在线阅读 下载PDF
Joint planning method for cross-domain unmanned swarm target assignment and mission trajectory
14
作者 WANG Ning LIANG Xiaolong +2 位作者 LI Zhe HOU Yueqi YANG Aiwu 《Journal of Systems Engineering and Electronics》 2025年第3期736-753,共18页
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss... Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA. 展开更多
关键词 cross-domain swarm unmanned system target assignment trajectory planning joint planning hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)
在线阅读 下载PDF
Inversion of Rayleigh wave dispersion curves based on the Osprey Optimization Algorithm
15
作者 Zhi Li Hang-yu Yue +3 位作者 De-xi Ma Yu Fu Jing-yang Ni Jin-jun Pi 《Applied Geophysics》 2025年第3期804-819,896,897,共18页
In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization al... In Rayleigh wave exploration,the inversion of dispersion curves is a crucial step for obtaining subsurface stratigraphic information,characterized by its multi-parameter and multi-extremum nature.Local optimization algorithms used in dispersion curve inversion are highly dependent on the initial model and are prone to being trapped in local optima,while classical global optimization algorithms often suffer from slow convergence and low solution accuracy.To address these issues,this study introduces the Osprey Optimization Algorithm(OOA),known for its strong global search and local exploitation capabilities,into the inversion of dispersion curves to enhance inversion performance.In noiseless theoretical models,the OOA demonstrates excellent inversion accuracy and stability,accurately recovering model parameters.Even in noisy models,OOA maintains robust performance,achieving high inversion precision under high-noise conditions.In multimode dispersion curve tests,OOA effectively handles higher modes due to its efficient global and local search capabilities,and the inversion results show high consistency with theoretical values.Field data from the Wyoming region in the United States and a landfill site in Italy further verify the practical applicability of the OOA.Comprehensive test results indicate that the OOA outperforms the Particle Swarm Optimization(PSO)algorithm,providing a highly accurate and reliable inversion strategy for dispersion curve inversion. 展开更多
关键词 surface wave exploration dispersion curve inversion Osprey Optimization algorithm Particle swarm Optimization geophysical inversion
在线阅读 下载PDF
Privacy-Aware Federated Learning Framework for IoT Security Using Chameleon Swarm Optimization and Self-Attentive Variational Autoencoder
16
作者 Saad Alahmari Abdulwhab Alkharashi 《Computer Modeling in Engineering & Sciences》 2025年第4期849-873,共25页
The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital applications.With the development of IoT devices,huge amounts of information,including users’private... The Internet of Things(IoT)is emerging as an innovative phenomenon concerned with the development of numerous vital applications.With the development of IoT devices,huge amounts of information,including users’private data,are generated.IoT systems face major security and data privacy challenges owing to their integral features such as scalability,resource constraints,and heterogeneity.These challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data,creating an attractive opportunity for cyberattacks.To address these challenges,artificial intelligence(AI)techniques,such as machine learning(ML)and deep learning(DL),are utilized to build an intrusion detection system(IDS)that helps to secure IoT systems.Federated learning(FL)is a decentralized technique that can help to improve information privacy and performance by training the IDS on discrete linked devices.FL delivers an effectual tool to defend user confidentiality,mainly in the field of IoT,where IoT devices often obtain privacy-sensitive personal data.This study develops a Privacy-Enhanced Federated Learning for Intrusion Detection using the Chameleon Swarm Algorithm and Artificial Intelligence(PEFLID-CSAAI)technique.The main aim of the PEFLID-CSAAI method is to recognize the existence of attack behavior in IoT networks.First,the PEFLIDCSAAI technique involves data preprocessing using Z-score normalization to transformthe input data into a beneficial format.Then,the PEFLID-CSAAI method uses the Osprey Optimization Algorithm(OOA)for the feature selection(FS)model.For the classification of intrusion detection attacks,the Self-Attentive Variational Autoencoder(SA-VAE)technique can be exploited.Finally,the Chameleon Swarm Algorithm(CSA)is applied for the hyperparameter finetuning process that is involved in the SA-VAE model.A wide range of experiments were conducted to validate the execution of the PEFLID-CSAAI model.The simulated outcomes demonstrated that the PEFLID-CSAAI technique outperformed other recent models,highlighting its potential as a valuable tool for future applications in healthcare devices and small engineering systems. 展开更多
关键词 Federated learning internet of things artificial intelligence chameleon swarm algorithm intrusion detection system healthcare IoT devices
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
17
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
18
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
19
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
20
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部