Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic test...Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic testing technologies, there has been an increasing interest in using these tools to diagnose the etiology of RSA. This review discusses the different types of genetic testing methods, such as karyotyping, chromosomal microarray analysis, next-generation sequencing, and their applications in the diagnosis of the etiology RSA. The use of genetic testing in the diagnosis of RSA has the potential to improve the accuracy of diagnosis and the understanding of the underlying mechanisms of the disorder, which could lead to better management and treatment of affected individuals.展开更多
Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy.The oncolytic influenza A virus,although promising in preclinical investigations,remains to be implemented in clinical practice.Recent prog...Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy.The oncolytic influenza A virus,although promising in preclinical investigations,remains to be implemented in clinical practice.Recent progress in genetic engineering,coupled with experiential insights,offers opportunities to enhance the therapeutic efficacy of the influenza A virus.This review explores the use of the influenza virus,its attenuated forms,and associated vaccines in cancer immunotherapy,highlighting their respective advantages and challenges.We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors,aiming to maximize their clinical impact.Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.展开更多
In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear ea...In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.展开更多
Lung cancer is one of the most common malignancies with the highest morbidity and mortality in the world,and the existing treatment methods often face challenges such as toxic side effects and drug resistance.Human um...Lung cancer is one of the most common malignancies with the highest morbidity and mortality in the world,and the existing treatment methods often face challenges such as toxic side effects and drug resistance.Human umbilical cord mesenchymal stem cells(hUC-MSCs)have become a promising new strategy in cancer treatment due to their unique biological characteristics(e.g.,self-renewal,multi-differentiation and immune regulation).This paper reviews the mechanism of hUC-MSCs in regulating the proliferation,apoptosis,invasion and metastasis of lung cancer cells and tumor microenvironment,and discusses the dual effect of HUC-MSCs in promoting or inhibiting cancer.In addition,this paper also discusses the engineering transformation strategy of hUC-MSCs as gene and drug carriers,which provides a new research idea and theoretical basis for the development of hUC-MSC-based targeted therapy for lung cancer.展开更多
Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candi...Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.展开更多
Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in moni...Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid.展开更多
文摘Recurrent spontaneous abortion (RSA) is a complex and heterogeneous disorder with multiple etiologies. Genetic factors are thought to play an important role in the etiology of RSA. With recent advances in genetic testing technologies, there has been an increasing interest in using these tools to diagnose the etiology of RSA. This review discusses the different types of genetic testing methods, such as karyotyping, chromosomal microarray analysis, next-generation sequencing, and their applications in the diagnosis of the etiology RSA. The use of genetic testing in the diagnosis of RSA has the potential to improve the accuracy of diagnosis and the understanding of the underlying mechanisms of the disorder, which could lead to better management and treatment of affected individuals.
基金supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2022R01002)the National Natural Science Foundation of China(Nos.82272300 and 82102893)the Fundamental Research Funds for the Central Universities(No.226-2024-00062),China.
文摘Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy.The oncolytic influenza A virus,although promising in preclinical investigations,remains to be implemented in clinical practice.Recent progress in genetic engineering,coupled with experiential insights,offers opportunities to enhance the therapeutic efficacy of the influenza A virus.This review explores the use of the influenza virus,its attenuated forms,and associated vaccines in cancer immunotherapy,highlighting their respective advantages and challenges.We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors,aiming to maximize their clinical impact.Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.
基金supported by the National Natural Science Foundation of China (Nos. 61271153, 61372039)
文摘In the face of harsh natural environment applications such as earth-orbiting and deep space satellites, underwater sea vehicles, strong electromagnetic interference and temperature stress,the circuits faults appear easily. Circuit faults will inevitably lead to serious losses of availability or impeded mission success without self-repair over the mission duration. Traditional fault-repair methods based on redundant fault-tolerant technique are straightforward to implement, yet their area, power and weight cost can be excessive. Moreover they utilize all plug-in or component level circuits to realize redundant backup, such that their applicability is limited. Hence, a novel selfrepair technology based on evolvable hardware(EHW) and reparation balance technology(RBT) is proposed. Its cost is low, and fault self-repair of various circuits and devices can be realized through dynamic configuration. Making full use of the fault signals, correcting circuit can be found through EHW technique to realize the balance and compensation of the fault output-signals. In this paper, the self-repair model was analyzed which based on EHW and RBT technique, the specific self-repair strategy was studied, the corresponding self-repair circuit fault system was designed, and the typical faults were simulated and analyzed which combined with the actual electronic devices. Simulation results demonstrated that the proposed fault self-repair strategy was feasible. Compared to traditional techniques, fault self-repair based on EHW consumes fewer hardware resources, and the scope of fault self-repair was expanded significantly.
基金The Project of Health and Wellness Science and Technology Plan in Baotou City(No.wsjkkj2022081).
文摘Lung cancer is one of the most common malignancies with the highest morbidity and mortality in the world,and the existing treatment methods often face challenges such as toxic side effects and drug resistance.Human umbilical cord mesenchymal stem cells(hUC-MSCs)have become a promising new strategy in cancer treatment due to their unique biological characteristics(e.g.,self-renewal,multi-differentiation and immune regulation).This paper reviews the mechanism of hUC-MSCs in regulating the proliferation,apoptosis,invasion and metastasis of lung cancer cells and tumor microenvironment,and discusses the dual effect of HUC-MSCs in promoting or inhibiting cancer.In addition,this paper also discusses the engineering transformation strategy of hUC-MSCs as gene and drug carriers,which provides a new research idea and theoretical basis for the development of hUC-MSC-based targeted therapy for lung cancer.
基金This study was supported by the National Major Science and Technology Project for Control and Prevention of Major Infectious Diseases in China[No.2018ZX10711001,2018ZX10305409-004-002]Emergency Prevention and Control Project of Ministry of Science and Technology of China[No.10600100000015001206].
文摘Objective In China, 24 cases of human infection with highly pathogenic avian influenza(HPAI) H5 N6 virus have been confirmed since the first confirmed case in 2014. Therefore, we developed and assessed two H5 N6 candidate vaccine viruses(CVVs).Methods In accordance with the World Health Organization(WHO) recommendations, we constructed two reassortant viruses using reverse genetics(RG) technology to match the two different epidemic H5 N6 viruses. We performed complete genome sequencing to determine the genetic stability. We assessed the growth ability of the studied viruses in MDCK cells and conducted a hemagglutination inhibition assay to analyze their antigenicity. Pathogenicity attenuation was also evaluated in vitro and in vivo.Results The results showed that no mutations occurred in hemagglutinin or neuraminidase, and both CVVs retained their original antigenicity. The replication capacity of the two CVVs reached a level similar to that of A/Puerto Rico/8/34 in MDCK cells. The two CVVs showed low pathogenicity in vitro and in vivo, which are in line with the WHO requirements for CVVs.Conclusion We obtained two genetically stable CVVs of HPAI H5N6 with high growth characteristics,which may aid in our preparedness for a potential H5N6 pandemic.
基金UK Engineering and Physical Sciences Research Council for funding the research (EPSRCGrant Reference: EP/C001788/1)
文摘Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid.