Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programm...Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.展开更多
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai...This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.展开更多
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ...Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.展开更多
Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing...Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing skin cancer image classification methods have certain limitations,such as poor interpretability,the requirement of domain knowledge for feature extraction,and the neglect of lesion area information in skin images.This paper proposes a new genetic programming(GP)approach to automatically learn global and/or local features from skin images for classification.To achieve this,a new function set and a new terminal set have been developed.The proposed GP method can automatically and flexibly extract effective local/global features from different types of input images,thus providing a comprehensive description of skin images.A new region detection function has been developed to select the lesion areas from skin images for feature extraction.The performance of this approach is evaluated on three skin cancer image classification tasks,and compared with three GP methods and six non-GP methods.The experimental results show that the new approach achieves significantly better or similar performance in most cases.Further analysis validates the effectiveness of our parameter settings,visualizes the multiple region detection functions used in the individual evolved by the proposed approach,and demonstrates its good convergence ability.展开更多
Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address...Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.展开更多
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding...The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations betw...Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superfic...An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superficial gas velocity in the cold stage.For each clustering,a novel genetic programming(NGP)was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage.The least square method(LSM)and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance.Simulation results show the superiority of the proposed method.展开更多
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, there...The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.展开更多
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves r...Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.展开更多
Web image retrieval is a challenging task. One central problem of web image retrieval is to rank a set of images according to how well they meet the user information need. The problem of learning to rank has inspired ...Web image retrieval is a challenging task. One central problem of web image retrieval is to rank a set of images according to how well they meet the user information need. The problem of learning to rank has inspired numerous approaches to resolve it in the text information retrieval, related work for web image retrieval, however, are still limited. We focus on the problem of learning to rank images for web image retrieval, and propose a novel ranking model, which employs a genetic programming architecture to automatically generate an effective ranking function, by combining various types of evidences in web image retrieval, including text information, image visual content features, link structure analysis and temporal information. The experimental results show that the proposed algorithms are capable of learning effective ranking functions for web image retrieval. Significant improvement in relevancy obtained, in comparison to some other well-known ranking techniques, in terms of MAP, NDCG@n and D@n.展开更多
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio...A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
文摘Evolutionary algorithms have been extensively utilized in practical applications.However,manually designed population updating formulas are inherently prone to the subjective influence of the designer.Genetic programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world problems.This paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human intervention.Partial modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the algorithm.By designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update formula.The Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the CSO.To validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark suite.Furthermore,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking process.The experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.
基金Projects(52108364,52278398)supported by the National Natural Science Foundation of ChinaProject(211179)supported by the Royal Society,UK+1 种基金Project(22CX06051A)supported by the Independent Innovation Research Plan Project of China University of Petroleum(East China)Project(ZR2023QE004)supported by the Shandong Provincial Natural Science Foundation,China。
文摘This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.
文摘Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.
基金supported in part by National Natural Science Foundation of China(U23A20340,62376253,62106230,62176238,62476254)China Postdoctoral Science Foundation,China(2023M743185)+2 种基金Natural Science Foundation of Henan Province,China(222300420088)Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications,China Open Foundation(BDIC-2023-A-007)Frontier Exploration Projects of Longmen Laboratory,China(NO.LMQYTSKT031).
文摘Dermatologists typically require extensive experience to accurately classify skin cancer.In recent years,the development of computer vision and machine learning has provided new methods for assisted diagnosis.Existing skin cancer image classification methods have certain limitations,such as poor interpretability,the requirement of domain knowledge for feature extraction,and the neglect of lesion area information in skin images.This paper proposes a new genetic programming(GP)approach to automatically learn global and/or local features from skin images for classification.To achieve this,a new function set and a new terminal set have been developed.The proposed GP method can automatically and flexibly extract effective local/global features from different types of input images,thus providing a comprehensive description of skin images.A new region detection function has been developed to select the lesion areas from skin images for feature extraction.The performance of this approach is evaluated on three skin cancer image classification tasks,and compared with three GP methods and six non-GP methods.The experimental results show that the new approach achieves significantly better or similar performance in most cases.Further analysis validates the effectiveness of our parameter settings,visualizes the multiple region detection functions used in the individual evolved by the proposed approach,and demonstrates its good convergence ability.
文摘Ensuring the reliability of pipe pile designs under earthquake loading necessitates an accurate determination of lateral displacement and bending moment,typically achieved through complex numerical modeling to address the intricacies of soil-pile interaction.Despite recent advancements in machine learning techniques,there is a persistent need to establish data-driven models that can predict these parameters without using numerical simulations due to the difficulties in conducting correct numerical simulations and the need for constitutive modelling parameters that are not readily available.This research presents novel lateral displacement and bending moment predictive models for closed and open-ended pipe piles,employing a Genetic Programming(GP)approach.Utilizing a soil dataset extracted from existing literature,comprising 392 data points for both pile types embedded in cohesionless soil and subjected to earthquake loading,the study intentionally limited input parameters to three features to enhance model simplicity:Standard Penetration Test(SPT)corrected blow count(N60),Peak Ground Acceleration(PGA),and pile slenderness ratio(L/D).Model performance was assessed via coefficient of determination(R^(2)),Root Mean Squared Error(RMSE),and Mean Absolute Error(MAE),with R^(2) values ranging from 0.95 to 0.99 for the training set,and from 0.92 to 0.98 for the testing set,which indicate of high accuracy of prediction.Finally,the study concludes with a sensitivity analysis,evaluating the influence of each input parameter across different pile types.
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.
基金financially supported by the Biological BreedingNational Science and Technology Major Project(2023ZD0405806)the National Key R&D Program for the 14th Five-Year Plan in China(2022YFD2200304).
文摘The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement.The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated.Here,we compared the selection effectiveness of combined and individual direct selection strategies using half-and full-sib families produced from advanced-generation P.tabuliformis seed orchard as our test populations.Our results revealed that,within half-sib families,average diameter at breast height(DBH),tree height,and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%,18.56%,and 31.01%,respectively,than those selected by the combined selection strategy.Furthermore,significant differences(P<0.01)were observed between the two strategies in terms of the expected genetic gains for average tree height and volume.In contrast,within full-sib families,the differences in tree average DBH,height,and volume between the two selection strategies were relatively minor with increase of 0.17%,2.73%,and 2.21%,respectively,and no significant differences were found in the average expected genetic gains for the studied traits.Half-sib families exhibited greater phenotypic and genetic variation,resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk.Based on genetic distance estimates using molecular markers,our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm(IAPGA)reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs,respectively.In conclusion,the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P.tabuliformis seed orchards.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金Sponsored by National Natural Science Foundation of China(60736021,21076179)National High-Technologies Research and Development Program of China(863 Program)(2006AA04Z184,2007AA041406)+1 种基金Key Technologies Research and Development Program of Zhejiang Province of China(2006C11066,2006C31051)Natural Science Foundation of Zhejiang Province of China(Y4080339)
文摘An empirical dynamic model of burn-through point(BTP)in sintering process was developed.The K-means clustering was used to feed distribution according to the cold bed permeability,which was estimated by the superficial gas velocity in the cold stage.For each clustering,a novel genetic programming(NGP)was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage.The least square method(LSM)and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance.Simulation results show the superiority of the proposed method.
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.
基金This paper is supported by Jinchuan Group Ltd.(No.2004-01D).
文摘The surface subsidence induced by mining is a complex problem, which is related with many complex and uncertain factors. Genetic programming (GP) has a good ability to deal with complex and nonlinear problems, therefore genetic programming approach is propesed to predict mining induced surface subsidence in this article. First genetic programming technique is introduced, second, surface subsidence genetic programming model is set up by selecting its main affective factors and training relating to practical engineering data, and finally, predictions are made by the testing of data, whose results show that the relative error is approximately less than 10%, which can meet the engineering needs, and therefore, this proposed approach is valid and applicable in predicting mining induced surface subsidence. The model offers a novel method to predict surface subsidence in mining.
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
基金supported under Australian Research Council’s Discovery Projects funding scheme(project No. DP120101761)
文摘Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.
基金supported by the Natural Science Foundation of China (60970047)the Natural Science Foundation of Shandong Province (Y2008G19)the Key Science-Technology Project of Shandong Province (2007GG10001002, 2008GG10001026)
文摘Web image retrieval is a challenging task. One central problem of web image retrieval is to rank a set of images according to how well they meet the user information need. The problem of learning to rank has inspired numerous approaches to resolve it in the text information retrieval, related work for web image retrieval, however, are still limited. We focus on the problem of learning to rank images for web image retrieval, and propose a novel ranking model, which employs a genetic programming architecture to automatically generate an effective ranking function, by combining various types of evidences in web image retrieval, including text information, image visual content features, link structure analysis and temporal information. The experimental results show that the proposed algorithms are capable of learning effective ranking functions for web image retrieval. Significant improvement in relevancy obtained, in comparison to some other well-known ranking techniques, in terms of MAP, NDCG@n and D@n.
基金National Defense Advanced Research Foundation of China
文摘A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.