Litchi(Litchi chinensis Sonn.),an important fruit tree in tropical and subtropical regions,possesses substantial economic value.The branchand leaf-related traits of litchi have a significant impact on litchi yield and...Litchi(Litchi chinensis Sonn.),an important fruit tree in tropical and subtropical regions,possesses substantial economic value.The branchand leaf-related traits of litchi have a significant impact on litchi yield and quality.However,due to limitations such as the density of the genetic linkage map,there have been few studies on mapping QTLs of branch-and leaf-related traits.In this study,a high-density genetic map was constructed by next-generation sequencing(NGS)using an F_(1) population of 264 progenies,derived from the cross between the cultivars‘Sanyuehong'and‘Ziniangxi'.A total of 2574 high-quality BINs(binomial intervals)were obtained,and a genetic linkage map was constructed with a total length of 1753.3 cM and an average marker distance of 0.68 cM.With the genetic map and the phenotyping of single leaf length(SLL),single leaf width(SLW),leaf shape index(LSI),weight of specific leaf(WSL),petiole length(PL)and compound leaf length(CLL)measured in three seasons,11,9,9,10,9 and 12 QTLs were detected for SLL,SLW,WSL,LSI,PL and CLL traits,respectively.Among these QTLs,five QTLs were consistently detected in two seasons and 12 pleiotropic QTLs were identified for at least two traits.These findings will provide new insights for the gene cloning for branch-and leaf-related traits as well as marker-assisted selection(MAS).展开更多
Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific leng...Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.展开更多
General combining abilities (GCAs) are very important in utilization of heterosis in maize breeding. However, its genetic basis is unclear. In the present study, a set of 118 doubled haploid (DH) lines were induce...General combining abilities (GCAs) are very important in utilization of heterosis in maize breeding. However, its genetic basis is unclear. In the present study, a set of 118 doubled haploid (DH) lines were induced from F1 generations produced from the cross between the inbred line Zheng 58 and the inbred line W499 belonging to the Reid subgroup. Using the MaizeSNP50 BeadChip, a high-density genetic map was constructed based on the DH population which included 1 147 bin markers with an average interval length of 2.00 cM. Meanwhile, the DH population was crossed with three testers including W16-5, HD568, and W556, which belong to the Sipingtou subgroup. The GCAs of the ear height (EH), the kernel moisture content (KMC), the kernel ratio (KR), and the yield per plant (YPP) were estimated using these hybrids in three environments. Combining the high-density genetic map and the GCAs, a total of 14 QTLs were detected for the GCAs of the four traits. Especially, one pleiotropic QTL was identified on chromosome 1 between the SNP SYN16067 and the SNP PZE-101169244 which was simultaneously associated with the GCAs of the EH, the KR, and the YPP. These QTLs pave the way for further dissecting the genetic architecture underlying GCAs of the traits, and they may be used to enhance GCAs of inbred lines under the fixed heterotic pattern ReidxSipingtou in China through a marker-assisted selection approach.展开更多
Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical ...Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical map and genetic map. In this study, soybean genome sequence data, released by JGI (US Department of Energy's Joint Genome Institute), had been downloaded. With the software Blast 2.2.16, a total of 161 super sequences were mapped on the soybean public genetic map to construct an integrated map. The length of these super sequences accounted for 73.08% of all the genome sequence. This integrated map could be used for gene cloning, gene mining, and comparative genome of legume.展开更多
Adzuki bean(Vigna angularis(Willd.)Ohwi&Ohashi)is an annual cultivated leguminous crop commonly grown in Asia and consumed worldwide.However,there has been limited research regarding adzuki bean genetics,which has...Adzuki bean(Vigna angularis(Willd.)Ohwi&Ohashi)is an annual cultivated leguminous crop commonly grown in Asia and consumed worldwide.However,there has been limited research regarding adzuki bean genetics,which has prevented the efficient application of genes during breeding.In the present study,we constructed a high-density genetic map based on whole genome re-sequencing technology and validated its utility by mining QTLs related to seed size.Moreover,we analyzed the sequences flanking insertions/deletions(In Dels)to develop a set of PCR-based markers useful for characterizing adzuki bean genetics.A total of 2904 markers were mapped to 11 linkage groups(LGs).The total length of the map was 1365.0 cM,with an average distance between markers of 0.47 cM.Among the LGs,the number of markers ranged from 208(LG7)to 397(LG1)and the total distance ranged from 97.4 cM(LG9)to 155.6 cM(LG1).Twelve QTLs related to seed size were identified using the constructed map.The two major QTLs in LG2 and LG9 explained 22.1 and 18.8%of the total phenotypic variation,respectively.Ten minor QTLs in LG4,LG5 and LG6 explained 3.0–10.4%of the total phenotypic variation.A total of 9718 primer pairs were designed based on the sequences flanking In Dels.Among the 200 selected primer pairs,75 revealed polymorphisms in 24 adzuki bean germplasms.The genetic map constructed in this study will be useful for screening genes related to other traits.Furthermore,the QTL analysis of seed size and the novel markers described herein may be relevant for future molecular investigations of adzuki bean and will be useful for exploiting the mechanisms underlying legume seed development.展开更多
Litchi chinensis Sonn is widely cultivated in subtropical regions and has an important economic value.A high-density genetic map is a valuable tool for mapping quantitative trait loci(QTL)and marker-assisted breeding ...Litchi chinensis Sonn is widely cultivated in subtropical regions and has an important economic value.A high-density genetic map is a valuable tool for mapping quantitative trait loci(QTL)and marker-assisted breeding programs.In this study,a single nucleotide polymorphism(SNP)-based high-density linkage map was constructed by a genotyping-by-sequencing(GBS)protocol using an F1 population of 178 progenies between two commercial litchi cultivars,‘Ziniangxi’(dwarf)and‘Feizixiao’(vigorous).The genetic map consisted of 3027 SNP markers with a total length of 1711.97 cM in 15 linkage groups(LGs)and an average marker distance of 0.57 cM.Based on this high-density linkage map and three years of phenotyping,a total of 37 QTLs were detected for eight dwarf-related traits,including length of new branch(LNB),diameter of new branch(DNB),length of common petiole(LCP),diameter of common petiole(DCP),length of internode(LI),length of single leaf(LSL),width of single leaf(WSL),and plant height(PH).These QTLs could explain 8.0 to 14.7%(mean=9.7%)of the phenotypic variation.Among them,several QTL clusters were observed,particularly on LG04 and LG11,which might show enrichment for genes regulating the dwarf-related traits in litchi.There were 126 candidate genes identified within the QTL regions,55 of which are differentially expressed genes by RNA-seq analysis between‘Ziniangxi’and‘Feizixiao’.These DEGs were found to participate in the regulation of cell development,material transportation,signal transduction,and plant morphogenesis,so they might play important roles in regulating plant dwarf-related traits.The high-density genetic map and QTLs identification related to dwarf traits can provide a valuable genetic resource and a basis for marker-assisted selection and genomic studies of litchi.展开更多
Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved ...Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.展开更多
Dramatic changes in climatic conditions that supplement the biotic and abiotic stresses pose severe threat to the sustainable rice production and have made it a difficult task for rice molecular breeders to enhance pr...Dramatic changes in climatic conditions that supplement the biotic and abiotic stresses pose severe threat to the sustainable rice production and have made it a difficult task for rice molecular breeders to enhance production and productivity under these stress factors. The main focus of rice molecular breeders is to understand the fundamentals of molecular pathways involved in complex agronomic traits to increase the yield. The availability of complete rice genome sequence and recent improvements in rice genomics research has made it possible to detect and map accurately a large number of genes by using linkage to DNA markers. Linkage mapping is an effective approach to identify the genetic markers which are co-segregating with target traits within the family. The ideas of genetic diversity, quantitative trait locus(QTL) mapping, and marker-assisted selection(MAS) are evolving into more efficient concepts of linkage disequilibrium(LD) also called association mapping and genomic selection(GS), respectively. The use of cost-effective DNA markers derived from the fine mapped position of the genes for important agronomic traits will provide opportunities for breeders to develop high-yielding, stress-resistant, and better quality rice cultivars. Here we focus on the progress of molecular marker technologies, their application in genetic mapping and evolution of association mapping techniques in rice.展开更多
Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitiv...Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitive(PPIS)and photoperiod-sensitive(PPS)germplasms differed significantly in a moderately long day and high temperature environment.However,both germplasms exhibited a similar response in short day with either low temperature or high temperature environment.Photoperiod sensitivity led to this difference in sex expression between the germplasms.For the traits of 1st female flowering node(FFFN)and number of female flowers(NFF),high-density linkage map construction and quantitative trait locus(QTL)mapping were performed using SLAF-seq technology and 162 F_(2) individuals generated from PPIS and PPS.In total,4655 SLAFs were selected and mapped on 20 linkage groups(LGs).The total map length was 2502.01 cM with an average interval distance of 0.75 cM.Major QTLs for both FFFN and NFF were detected on LG6 with intervals of 7.89 and 17.67 cM and PVE values of 30.5%and 22.9%,respectively.Further analyses of the major locus for FFFN revealed 73 protein-coding genes.Among them,4 were related to sex expression,photoperiod flowering,and hormone response.An InDel(insertion and deletion)marker partially correlated with FFFN of the F_(2) population was also developed.Our study identified the QTL for the sex expression response to environmental factors using the high-density linkage map.The identified candidate genes and markers will provide useful information about the molecular interaction between the environment and sex expression and for marker-assisted selection of pumpkin environment-insensitive resources.展开更多
Ancherythroculter nigrocauda is a fish endemic to the upper areas of the Changjiang(Yangtze)River in China.Quantitative trait locus(QTL)mapping is a powerful tool to identify potential genes affecting traits of econom...Ancherythroculter nigrocauda is a fish endemic to the upper areas of the Changjiang(Yangtze)River in China.Quantitative trait locus(QTL)mapping is a powerful tool to identify potential genes affecting traits of economic importance in domestic animals.In this study,a high-density genetic map was constructed with 5901 single nucleotide polymorphism(SNP)makers by sequencing 92 individual fish from a F1 family using the specific-locus amplified fragment sequencing approach.Initially,48 QTLs for total length,body length,body height,and body weight were identified according to the high density of the genetic map with 24 LGs,a total length of 3839.4 cM,and marker spacing of about 0.82 cM.These QTLs explained 27.1%-49.9%of phenotypic variance.The results of this study suggest that major QTLs are responsible for the growth of A.nigrocauda,and these are potentially useful in comparative genomics research,genome assembly,and marker-assisted breeding programs for this species.展开更多
F2:10 RIL population with 154 lines, crossed by Charleston as female parent and Dongnong 594 as male parent were used. 164 SSR primers were screened with the two parents and amplified on the 154 lines. A new soybean ...F2:10 RIL population with 154 lines, crossed by Charleston as female parent and Dongnong 594 as male parent were used. 164 SSR primers were screened with the two parents and amplified on the 154 lines. A new soybean molecular genetics map, named NEAUSRI-GMS, was constructed by Mapmaker. The total length of the soybean genetic map is 1 913.5 cM, and the average distance among markers is 11.89 cM. The length of linkage group varied from 0.4 to 309.5 cM, and the markers on the linkage group varied from 2 to 28. The distribution of SSR markers on every linkage group is not even. High density region of markers existed on linkage group A1, C2, and Dla. Compared with 5 soybean genetic maps constructed at home and abroad, NEAUSRI-GMS has high homologous with the public genetic map abroad.展开更多
Verticillium wilt is one of the most important diseases affecting cotton production in China.The fungus,Verticillium dahliae,has a wide host range and a high degree of genetic variability.No resistance resources have ...Verticillium wilt is one of the most important diseases affecting cotton production in China.The fungus,Verticillium dahliae,has a wide host range and a high degree of genetic variability.No resistance resources have been found in the available planting resources,thus presenting difficulties and challenges for our study.The long-term production practice shows that selection of disease-resistant varieties is the most economical and effective measure to control Verticillium wilt of cotton to reduce the yield loss and quality decline of cotton.In this paper,we summarized the genetic mapping population,the analysis method of genetic localization,the discovery,mining and cloning of disease-resistant quantitative trait loci/markers,and the analysis of their genetic functions,so as to provide information for the molecular breeding approach of disease-resistant cotton.展开更多
A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,th...A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,the application of mapping results from a GWAS panel to conventional wheat breeding remains a challenge.In this study,we first report a general genetic map which was constructed from 44 published linkage maps.It permits the estimation of genetic distances between any two genetic loci with physical map positions,thereby unifying the linkage relationships between QTL,genes,and genomic markers from multiple genetic populations.Second,we describe QTL mapping in a wheat GWAS panel of 688 accessions,identifying 77 QTL associated with 12 yield and grain-quality traits.Because these QTL have known physical map positions,they could be mapped onto the general map.Finally,we present a design approach to wheat breeding by using known QTL information and computer simulation.Potential crosses between parents in the GWAS panel may be evaluated by the relative frequency of the target genotype,trait correlations in simulated progeny populations,and genetic gain of selected progenies.It is possible to simultaneously improve yield and grain quality by suitable parental selection,progeny population size,and progeny selection scheme.Applying the design approach will allow identifying the most promising crosses and selection schemes in advance of the field experiment,increasing predictability and efficiency in wheat breeding.展开更多
Background:Segregation distortion(SD)is a common phenomenon among stable or segregating populations,and the principle behind it still puzzles many researchers.The F2:3 progenies developed from the wild cotton species ...Background:Segregation distortion(SD)is a common phenomenon among stable or segregating populations,and the principle behind it still puzzles many researchers.The F2:3 progenies developed from the wild cotton species of the D genomes were used to investigate the possible plant transcription factors within the segregation distortion regions(SDRs).A consensus map was developed between two maps from the four D genomes,map A derived from F2:3 progenies of Gossypium klotzschianum and G.davidsonii while Map B from G.thurberi and G.trilobum F2:3 generations.In each map,188 individual plants were used.Results:The consensus linkage map had 1492 markers across the 13 linkage groups with a map size of 1467.445 cM and an average marker distance of 1.0370 cM.Chromosome D502 had the highest percentage of SD with 58.6%,followed by Chromosome D507 with 47.9%.Six thousand and thirty-eight genes were mined within the SDRs on chromosome D502 and D507 of the consensus map.Within chromosome D502 and D507,2308 and 3730 genes were mined,respectively,and were found to belong to 1117 gourp out of which 622 groups were common across the two chromosomes.Moreover,genes within the top 9 groups related to plant resistance genes(R genes),whereas 188 genes encoding protein kinase domain(PF00069)comprised the largest group.Further analysis of the dominant gene group revealed that 287 miRNAs were found to target various genes,such as the gra-miR398,gramiR5207,miR164a,miR164b,miR164c among others,which have been found to target top-ranked stress-responsive transcription factors such as NAC genes.Moreover,some of the stress-responsive cis-regulatory elements were also detected.Furthermore,RNA profiling of the genes from the dominant family showed that higher numbers of genes were highly upregulated under salt and osmotic stress conditions,and also they were highly expressed at different stages of fiber development.Conclusion:The results indicated the critical role of the SDRs in the evolution of the key regulatory genes in plants.展开更多
Cotton (Gossypium spp.) is the most important natural fiber in the world, and its seeds are also used as a food source. Breeding cotton for traits of interest, such as production and processing of fibers, will ensure ...Cotton (Gossypium spp.) is the most important natural fiber in the world, and its seeds are also used as a food source. Breeding cotton for traits of interest, such as production and processing of fibers, will ensure that this natural product is as competitive as renewable synthetic fibers derived from petroleum. Thus, the mapping of the cotton genome for traits of interest may be the basis for its subsequent use in breeding programs. This work consists of a literature review, with the aim of bringing together works from different research groups working with the mapping of the cotton genome with molecular markers.展开更多
Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Ther...Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Therefore,the construction of a high density genetic map of tetraploid rose is both challenging and instructive.In this study,a tetraploid rose population was used to conduct a genetic analysis using genome sequencing.A total of 17382 single nucleotide polymorphism(SNP)markers were selected from 2308042 detected SNPs.Combined with 440 previously developed simple sequence repeats(SSR)and amplified fragment length polymorphism(AFLP)markers,a marker dosage of 6885 high quality markers was successfully assigned by GATK software in the tetraploid model.These markers were used in the construction of a high density genetic map,containing the expected seven linkage groups with 6842 markers,a total map length of 1158.9 c M,and an average inter-marker distance of 0.18 c M.Quantitative trait locus(QTL)analysis was subsequently performed to characterize the genetic architecture of petal number and flower diameter.One major QTL(qpnum-3-1)was detected for petal number in three consecutive years,which explained 20.18–22.11%of the variation in petal number.Four QTLs were detected for flower diameter;the main locus,qfdia-2-2,was identified in two consecutive years.Our results will benefit the molecular marker-assisted breeding of modern rose cultivars.In addition,this study provides a guide for the genetic and QTL analysis of autotetraploid plants using sequencing-based genotyping methods.展开更多
Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean ...Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.展开更多
With their high economic value and cultural significance,modern roses are one of the most important ornamental plants.Because of their complicated genetic background and tetraploid nature,the creation of high-density ...With their high economic value and cultural significance,modern roses are one of the most important ornamental plants.Because of their complicated genetic background and tetraploid nature,the creation of high-density genetic maps of roses has been a challenge that has slowed the pace of molecular breeding for modern roses.The current construction of tetraploid genetic maps based on existing diploid rose genomes could lead to inaccurate marker information and genotyping results.Therefore,we generated the first high-quality tetraploid genome of Rosa chinensis‘Yunzheng Xiawei.'Utilizing Illumina,PacBio,and Hi-C sequencing technologies,we assembled a genome of 858.59 Mb with 14pseudo-chromosomes.Mode of inheritance analysis using PolyOrigin indicated that modern roses show both quadrivalent and bivalent pairing.Based on this reference genome,high-density genetic maps were constructed using MSTmap with nearly saturated markers.Quantitative trait locus(QTL)analysis was conducted using WinQTLCart and R/qtl for flavonoids and carotenoids,and 11 QTL clusters were identified.By combining the genome annotation,phylogenetic analyses,and gene expression analyses,we were able to identify several key genes related to flavonoid and carotenoid biosynthesis.This study provides the basis for further genetic analyses of highly heterozygous tetraploid roses and could facilitate the progress of marker-assisted selection in modern roses.展开更多
In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkag...In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkage map of rice. Total of 142 newly screened AFLP markers and 30 anchor markers (25 SSR markers and 5 RFLP markers) were mapped on the 12 chromosomes covering 1537.4 cM of rice genome. The average interval between these markers was 9.0 cM. The total work which usually was finished in more than one year was finished within only 3 months by one person. This is the first plant AFLP map developed in China. A new thermosensitive genic male sterile gene in rice, tms5, was Egged and mapped onto chromosome 2 during the development of the linkage map.展开更多
Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) popul...Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.展开更多
基金supported by the Science and Technology Special Fund of Hainan Province(Grant Nos.ZDYF2021XDNY159 and ZDYF2021XDNY156)the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Science(Grant No.1630032022007)China Agricultural Research System of MOF and MARA(Grant No.CARS-32-01)。
文摘Litchi(Litchi chinensis Sonn.),an important fruit tree in tropical and subtropical regions,possesses substantial economic value.The branchand leaf-related traits of litchi have a significant impact on litchi yield and quality.However,due to limitations such as the density of the genetic linkage map,there have been few studies on mapping QTLs of branch-and leaf-related traits.In this study,a high-density genetic map was constructed by next-generation sequencing(NGS)using an F_(1) population of 264 progenies,derived from the cross between the cultivars‘Sanyuehong'and‘Ziniangxi'.A total of 2574 high-quality BINs(binomial intervals)were obtained,and a genetic linkage map was constructed with a total length of 1753.3 cM and an average marker distance of 0.68 cM.With the genetic map and the phenotyping of single leaf length(SLL),single leaf width(SLW),leaf shape index(LSI),weight of specific leaf(WSL),petiole length(PL)and compound leaf length(CLL)measured in three seasons,11,9,9,10,9 and 12 QTLs were detected for SLL,SLW,WSL,LSI,PL and CLL traits,respectively.Among these QTLs,five QTLs were consistently detected in two seasons and 12 pleiotropic QTLs were identified for at least two traits.These findings will provide new insights for the gene cloning for branch-and leaf-related traits as well as marker-assisted selection(MAS).
基金funded by the Scientific and Technological Key Program of Guizhou Province, China (Qiankehezhicheng [2022] Key 031)the National Natural Science Foundation of China (32160483 and 32360497)+2 种基金the Post-Funded Project for the National Natural Science Foundation of China from Guizhou University ([2023]093)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, China (Qiankehezhongyindi [2023]008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji [2023] 007)。
文摘Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.
基金financially supported by the National Key Research and Development Plan of China(2016YFD0101200)
文摘General combining abilities (GCAs) are very important in utilization of heterosis in maize breeding. However, its genetic basis is unclear. In the present study, a set of 118 doubled haploid (DH) lines were induced from F1 generations produced from the cross between the inbred line Zheng 58 and the inbred line W499 belonging to the Reid subgroup. Using the MaizeSNP50 BeadChip, a high-density genetic map was constructed based on the DH population which included 1 147 bin markers with an average interval length of 2.00 cM. Meanwhile, the DH population was crossed with three testers including W16-5, HD568, and W556, which belong to the Sipingtou subgroup. The GCAs of the ear height (EH), the kernel moisture content (KMC), the kernel ratio (KR), and the yield per plant (YPP) were estimated using these hybrids in three environments. Combining the high-density genetic map and the GCAs, a total of 14 QTLs were detected for the GCAs of the four traits. Especially, one pleiotropic QTL was identified on chromosome 1 between the SNP SYN16067 and the SNP PZE-101169244 which was simultaneously associated with the GCAs of the EH, the KR, and the YPP. These QTLs pave the way for further dissecting the genetic architecture underlying GCAs of the traits, and they may be used to enhance GCAs of inbred lines under the fixed heterotic pattern ReidxSipingtou in China through a marker-assisted selection approach.
基金Supported by the Projects of the National Science and Technology Programs (2006AA10Z1F4)Heilongjiang Postdoctoral Science-Research Foundation (LHK-04014 & LRB06-126)+1 种基金Heilongjiang "11th Five-Year Plan" Science and Technology Research Projects (GA06B101-2-6)Heilongjiang Young Academic Supporting Project (1152G007)
文摘Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical map and genetic map. In this study, soybean genome sequence data, released by JGI (US Department of Energy's Joint Genome Institute), had been downloaded. With the software Blast 2.2.16, a total of 161 super sequences were mapped on the soybean public genetic map to construct an integrated map. The length of these super sequences accounted for 73.08% of all the genome sequence. This integrated map could be used for gene cloning, gene mining, and comparative genome of legume.
基金supported by the National Key Research&Development Program of China(2019YFD1001300 and 2019YFD1001303)the earmarked fund for China Agriculture Research System(CARS-08)the Agricultural Science Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。
文摘Adzuki bean(Vigna angularis(Willd.)Ohwi&Ohashi)is an annual cultivated leguminous crop commonly grown in Asia and consumed worldwide.However,there has been limited research regarding adzuki bean genetics,which has prevented the efficient application of genes during breeding.In the present study,we constructed a high-density genetic map based on whole genome re-sequencing technology and validated its utility by mining QTLs related to seed size.Moreover,we analyzed the sequences flanking insertions/deletions(In Dels)to develop a set of PCR-based markers useful for characterizing adzuki bean genetics.A total of 2904 markers were mapped to 11 linkage groups(LGs).The total length of the map was 1365.0 cM,with an average distance between markers of 0.47 cM.Among the LGs,the number of markers ranged from 208(LG7)to 397(LG1)and the total distance ranged from 97.4 cM(LG9)to 155.6 cM(LG1).Twelve QTLs related to seed size were identified using the constructed map.The two major QTLs in LG2 and LG9 explained 22.1 and 18.8%of the total phenotypic variation,respectively.Ten minor QTLs in LG4,LG5 and LG6 explained 3.0–10.4%of the total phenotypic variation.A total of 9718 primer pairs were designed based on the sequences flanking In Dels.Among the 200 selected primer pairs,75 revealed polymorphisms in 24 adzuki bean germplasms.The genetic map constructed in this study will be useful for screening genes related to other traits.Furthermore,the QTL analysis of seed size and the novel markers described herein may be relevant for future molecular investigations of adzuki bean and will be useful for exploiting the mechanisms underlying legume seed development.
基金funded by the Key-Area of Research and Development Program of Guangdong Province,China(2018B020202011)the National Natural Science Foundation of China(31701885)+2 种基金the China Agriculture Research System of MOF and MARA(CARS-32-05)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,China(SKLCUSA-b201716)the YangFan Innovative&Entrepreneurial Research Team Project,China(2014YT02H013)。
文摘Litchi chinensis Sonn is widely cultivated in subtropical regions and has an important economic value.A high-density genetic map is a valuable tool for mapping quantitative trait loci(QTL)and marker-assisted breeding programs.In this study,a single nucleotide polymorphism(SNP)-based high-density linkage map was constructed by a genotyping-by-sequencing(GBS)protocol using an F1 population of 178 progenies between two commercial litchi cultivars,‘Ziniangxi’(dwarf)and‘Feizixiao’(vigorous).The genetic map consisted of 3027 SNP markers with a total length of 1711.97 cM in 15 linkage groups(LGs)and an average marker distance of 0.57 cM.Based on this high-density linkage map and three years of phenotyping,a total of 37 QTLs were detected for eight dwarf-related traits,including length of new branch(LNB),diameter of new branch(DNB),length of common petiole(LCP),diameter of common petiole(DCP),length of internode(LI),length of single leaf(LSL),width of single leaf(WSL),and plant height(PH).These QTLs could explain 8.0 to 14.7%(mean=9.7%)of the phenotypic variation.Among them,several QTL clusters were observed,particularly on LG04 and LG11,which might show enrichment for genes regulating the dwarf-related traits in litchi.There were 126 candidate genes identified within the QTL regions,55 of which are differentially expressed genes by RNA-seq analysis between‘Ziniangxi’and‘Feizixiao’.These DEGs were found to participate in the regulation of cell development,material transportation,signal transduction,and plant morphogenesis,so they might play important roles in regulating plant dwarf-related traits.The high-density genetic map and QTLs identification related to dwarf traits can provide a valuable genetic resource and a basis for marker-assisted selection and genomic studies of litchi.
基金financially supported by National Key R&D Program of China(Grant No.2019YFD1001401)Project of Construction of Grape Germplasm Resources Sharing Platform(Grant No.PT2029)+2 种基金Zhengzhou Major Scientific and Technological Innovation Projects(Grant No.2020CXZX0082)National Modern Agricultural Industry Technology System Construction Special Project(Grant No.CARS-29-yc-1)Special Project of Science,Technology Innovation Project of Chinese Academy of Agricultural Sciences(Grant No.CAAS-ASTIP-2019-ZFRI).
文摘Grape berry shape is an important agricultural trait.Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands.However,the current study by forward genetics has not achieved in-depth results.Here,a high-density map was constructed to identify quantitative trait loci(QTLs)for berry shape.A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing(WGS)based on 208 F2 individuals derived from round grape‘E42-6’and oblong grape‘Rizamat’.The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM.Using this map,three significant QTLs for fruit shape index(ShI:ratio of berry length to berry width)identified over three years were mapped onto LG4 and LG5,including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb.Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry(their average ShI was 1.89 and 1.10,respectively)at four developmental stages,four candidate genes were selected from the above QTLs.They were mainly involved in DNA replication,cell wall modification,and phytohormone biosynthesis.Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes(DEGs),which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population.Furthermore,a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages.Our findings provide molecular insights into the genetic variation in grape berry shape.Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.
文摘Dramatic changes in climatic conditions that supplement the biotic and abiotic stresses pose severe threat to the sustainable rice production and have made it a difficult task for rice molecular breeders to enhance production and productivity under these stress factors. The main focus of rice molecular breeders is to understand the fundamentals of molecular pathways involved in complex agronomic traits to increase the yield. The availability of complete rice genome sequence and recent improvements in rice genomics research has made it possible to detect and map accurately a large number of genes by using linkage to DNA markers. Linkage mapping is an effective approach to identify the genetic markers which are co-segregating with target traits within the family. The ideas of genetic diversity, quantitative trait locus(QTL) mapping, and marker-assisted selection(MAS) are evolving into more efficient concepts of linkage disequilibrium(LD) also called association mapping and genomic selection(GS), respectively. The use of cost-effective DNA markers derived from the fine mapped position of the genes for important agronomic traits will provide opportunities for breeders to develop high-yielding, stress-resistant, and better quality rice cultivars. Here we focus on the progress of molecular marker technologies, their application in genetic mapping and evolution of association mapping techniques in rice.
基金supported by Key Realm R&D Program of Guangdong Province(Grant No.2020B020220003)the National Natural Science Foundation of China(Grant No.31601748)the Agricultural competitive industry discipline team building project of Guangdong Academy of Agricultural Sciences(Grant No.202103TD).
文摘Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitive(PPIS)and photoperiod-sensitive(PPS)germplasms differed significantly in a moderately long day and high temperature environment.However,both germplasms exhibited a similar response in short day with either low temperature or high temperature environment.Photoperiod sensitivity led to this difference in sex expression between the germplasms.For the traits of 1st female flowering node(FFFN)and number of female flowers(NFF),high-density linkage map construction and quantitative trait locus(QTL)mapping were performed using SLAF-seq technology and 162 F_(2) individuals generated from PPIS and PPS.In total,4655 SLAFs were selected and mapped on 20 linkage groups(LGs).The total map length was 2502.01 cM with an average interval distance of 0.75 cM.Major QTLs for both FFFN and NFF were detected on LG6 with intervals of 7.89 and 17.67 cM and PVE values of 30.5%and 22.9%,respectively.Further analyses of the major locus for FFFN revealed 73 protein-coding genes.Among them,4 were related to sex expression,photoperiod flowering,and hormone response.An InDel(insertion and deletion)marker partially correlated with FFFN of the F_(2) population was also developed.Our study identified the QTL for the sex expression response to environmental factors using the high-density linkage map.The identified candidate genes and markers will provide useful information about the molecular interaction between the environment and sex expression and for marker-assisted selection of pumpkin environment-insensitive resources.
基金Supported by the Technical Innovation Project of Hubei Province(No.2018ABA105)the Enterprise Technology Innovation Project of Wuhan(No.39 of 2019 WuKe)。
文摘Ancherythroculter nigrocauda is a fish endemic to the upper areas of the Changjiang(Yangtze)River in China.Quantitative trait locus(QTL)mapping is a powerful tool to identify potential genes affecting traits of economic importance in domestic animals.In this study,a high-density genetic map was constructed with 5901 single nucleotide polymorphism(SNP)makers by sequencing 92 individual fish from a F1 family using the specific-locus amplified fragment sequencing approach.Initially,48 QTLs for total length,body length,body height,and body weight were identified according to the high density of the genetic map with 24 LGs,a total length of 3839.4 cM,and marker spacing of about 0.82 cM.These QTLs explained 27.1%-49.9%of phenotypic variance.The results of this study suggest that major QTLs are responsible for the growth of A.nigrocauda,and these are potentially useful in comparative genomics research,genome assembly,and marker-assisted breeding programs for this species.
基金This work was supported by the National 863 Program of China(20012AA211041)National Key Technolo-gies R&D Program of China(2004BA907A26)Young Science Foundation of Harbin,China(2002AFQXJ043).
文摘F2:10 RIL population with 154 lines, crossed by Charleston as female parent and Dongnong 594 as male parent were used. 164 SSR primers were screened with the two parents and amplified on the 154 lines. A new soybean molecular genetics map, named NEAUSRI-GMS, was constructed by Mapmaker. The total length of the soybean genetic map is 1 913.5 cM, and the average distance among markers is 11.89 cM. The length of linkage group varied from 0.4 to 309.5 cM, and the markers on the linkage group varied from 2 to 28. The distribution of SSR markers on every linkage group is not even. High density region of markers existed on linkage group A1, C2, and Dla. Compared with 5 soybean genetic maps constructed at home and abroad, NEAUSRI-GMS has high homologous with the public genetic map abroad.
基金supported by the National Natural Science Foundation of China(31760402)Young and Middle-aged Science and Technology Leading Talents of Xinjiang Production and Construction Corps(2019CB027)+1 种基金Science and Technology Innovation Talent Plan of Xinjiang Production and Construction Corps(2021CB028)National Natural Funds-Xinjiang Joint Fund(U1703231).
文摘Verticillium wilt is one of the most important diseases affecting cotton production in China.The fungus,Verticillium dahliae,has a wide host range and a high degree of genetic variability.No resistance resources have been found in the available planting resources,thus presenting difficulties and challenges for our study.The long-term production practice shows that selection of disease-resistant varieties is the most economical and effective measure to control Verticillium wilt of cotton to reduce the yield loss and quality decline of cotton.In this paper,we summarized the genetic mapping population,the analysis method of genetic localization,the discovery,mining and cloning of disease-resistant quantitative trait loci/markers,and the analysis of their genetic functions,so as to provide information for the molecular breeding approach of disease-resistant cotton.
基金the Hainan Yazhou Bay Seed Laboratory(B21Y10209 and B22C10212)China Postdoctoral Science Foundation(2022M713433)+1 种基金National Natural Science Foundation of China(31861143003)Innovation Program of Chinese Academy of Agricultural Sciences.
文摘A large amount of genome-wide association study(GWAS)panels together with quantitative-trait locus(QTL)information associated with breeding-targeted traits have been described in wheat(Triticum aestivum L.).However,the application of mapping results from a GWAS panel to conventional wheat breeding remains a challenge.In this study,we first report a general genetic map which was constructed from 44 published linkage maps.It permits the estimation of genetic distances between any two genetic loci with physical map positions,thereby unifying the linkage relationships between QTL,genes,and genomic markers from multiple genetic populations.Second,we describe QTL mapping in a wheat GWAS panel of 688 accessions,identifying 77 QTL associated with 12 yield and grain-quality traits.Because these QTL have known physical map positions,they could be mapped onto the general map.Finally,we present a design approach to wheat breeding by using known QTL information and computer simulation.Potential crosses between parents in the GWAS panel may be evaluated by the relative frequency of the target genotype,trait correlations in simulated progeny populations,and genetic gain of selected progenies.It is possible to simultaneously improve yield and grain quality by suitable parental selection,progeny population size,and progeny selection scheme.Applying the design approach will allow identifying the most promising crosses and selection schemes in advance of the field experiment,increasing predictability and efficiency in wheat breeding.
基金This research program was financially sponsored by the National Key Research and Development Plan(2016YFD0100306)the National Natural Science Foundation of China(31671745,31530053).
文摘Background:Segregation distortion(SD)is a common phenomenon among stable or segregating populations,and the principle behind it still puzzles many researchers.The F2:3 progenies developed from the wild cotton species of the D genomes were used to investigate the possible plant transcription factors within the segregation distortion regions(SDRs).A consensus map was developed between two maps from the four D genomes,map A derived from F2:3 progenies of Gossypium klotzschianum and G.davidsonii while Map B from G.thurberi and G.trilobum F2:3 generations.In each map,188 individual plants were used.Results:The consensus linkage map had 1492 markers across the 13 linkage groups with a map size of 1467.445 cM and an average marker distance of 1.0370 cM.Chromosome D502 had the highest percentage of SD with 58.6%,followed by Chromosome D507 with 47.9%.Six thousand and thirty-eight genes were mined within the SDRs on chromosome D502 and D507 of the consensus map.Within chromosome D502 and D507,2308 and 3730 genes were mined,respectively,and were found to belong to 1117 gourp out of which 622 groups were common across the two chromosomes.Moreover,genes within the top 9 groups related to plant resistance genes(R genes),whereas 188 genes encoding protein kinase domain(PF00069)comprised the largest group.Further analysis of the dominant gene group revealed that 287 miRNAs were found to target various genes,such as the gra-miR398,gramiR5207,miR164a,miR164b,miR164c among others,which have been found to target top-ranked stress-responsive transcription factors such as NAC genes.Moreover,some of the stress-responsive cis-regulatory elements were also detected.Furthermore,RNA profiling of the genes from the dominant family showed that higher numbers of genes were highly upregulated under salt and osmotic stress conditions,and also they were highly expressed at different stages of fiber development.Conclusion:The results indicated the critical role of the SDRs in the evolution of the key regulatory genes in plants.
文摘Cotton (Gossypium spp.) is the most important natural fiber in the world, and its seeds are also used as a food source. Breeding cotton for traits of interest, such as production and processing of fibers, will ensure that this natural product is as competitive as renewable synthetic fibers derived from petroleum. Thus, the mapping of the cotton genome for traits of interest may be the basis for its subsequent use in breeding programs. This work consists of a literature review, with the aim of bringing together works from different research groups working with the mapping of the cotton genome with molecular markers.
基金the National Natural Science Foundation of China(31600565)the Fundamental Research Funds for the Central Public Welfare Research Institutes,China(ZZ13-YQ-053)+1 种基金the Special Fund for Beijing Common Construction Project,ChinaDr.Peter M.Bourke from Plant Breeding,Wageningen University&Research,The Netherlands,was partly funded through the TKI polyploids project(BO-26.03-009-004 and BO-50-002-022)。
文摘Rose is one of the most important ornamental and economic plants in the world.Modern rose cultivars are primarily tetraploid,and during meiosis,they may exhibit double reduction or preferential chromosome pairing.Therefore,the construction of a high density genetic map of tetraploid rose is both challenging and instructive.In this study,a tetraploid rose population was used to conduct a genetic analysis using genome sequencing.A total of 17382 single nucleotide polymorphism(SNP)markers were selected from 2308042 detected SNPs.Combined with 440 previously developed simple sequence repeats(SSR)and amplified fragment length polymorphism(AFLP)markers,a marker dosage of 6885 high quality markers was successfully assigned by GATK software in the tetraploid model.These markers were used in the construction of a high density genetic map,containing the expected seven linkage groups with 6842 markers,a total map length of 1158.9 c M,and an average inter-marker distance of 0.18 c M.Quantitative trait locus(QTL)analysis was subsequently performed to characterize the genetic architecture of petal number and flower diameter.One major QTL(qpnum-3-1)was detected for petal number in three consecutive years,which explained 20.18–22.11%of the variation in petal number.Four QTLs were detected for flower diameter;the main locus,qfdia-2-2,was identified in two consecutive years.Our results will benefit the molecular marker-assisted breeding of modern rose cultivars.In addition,this study provides a guide for the genetic and QTL analysis of autotetraploid plants using sequencing-based genotyping methods.
基金supported by the National Key R&D Program of China(2019YFD1001300 and 2019YFD1001303)the Construction of Molecular Database of Faba Bean and Pea and Identification of Maize Germplasm Project,Ministry of Agriculture and Rural Affairs,China(19200030)+3 种基金the Yunnan Key R&D Program,China(202202AE090003)the earmarked fund for China Agriculture Research System(CARS-08)the Crop Germplasm Resources Protection(2130135)the Major Agricultural Science and Technology Program of Chinese Academy of Agricultural Sciences(CAAS-XTCX20190025)。
文摘Owing to the limitation of a large genome size(~13 Gb),the genetic and gene mapping studies on faba bean(Vicia faba L.)are lagging far behind those for other legumes.In this study,we selected three purified faba bean lines(Yundou 8137,H0003712,and H000572)as parents and constructed two F2 populations.These two F2 populations,namely 167 F2 plants in Pop1(Yundou 8137×H0003712)and 204 F2 plants in Pop2(H000572×Yundou 8137),were genotyped using a targeted next-generation sequencing(TNGS)genotyping platform,and two high-density single nucleotide polymorphisms(SNP)genetic linkage maps of faba bean were constructed.The map constructed from Pop1 contained 5103 SNPs with a length of 1333.31 cM and an average marker density of 0.26 cM.The map constructed from Pop2 contained 1904 SNPs with a greater length of 1610.61 cM.In these two F2 populations,QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers,pods,plant types and grains.The two maps were then merged into an integrated genetic linkage map containing 6895 SNPs,with a length of 3324.48 cM.These results not only lay the foundation for fine mapping and map-based cloning of related genes,but can also accelerate the molecular marker-assisted breeding of faba bean.
基金supported by National Natural Science Foundation of China(Grant No.32071818)。
文摘With their high economic value and cultural significance,modern roses are one of the most important ornamental plants.Because of their complicated genetic background and tetraploid nature,the creation of high-density genetic maps of roses has been a challenge that has slowed the pace of molecular breeding for modern roses.The current construction of tetraploid genetic maps based on existing diploid rose genomes could lead to inaccurate marker information and genotyping results.Therefore,we generated the first high-quality tetraploid genome of Rosa chinensis‘Yunzheng Xiawei.'Utilizing Illumina,PacBio,and Hi-C sequencing technologies,we assembled a genome of 858.59 Mb with 14pseudo-chromosomes.Mode of inheritance analysis using PolyOrigin indicated that modern roses show both quadrivalent and bivalent pairing.Based on this reference genome,high-density genetic maps were constructed using MSTmap with nearly saturated markers.Quantitative trait locus(QTL)analysis was conducted using WinQTLCart and R/qtl for flavonoids and carotenoids,and 11 QTL clusters were identified.By combining the genome annotation,phylogenetic analyses,and gene expression analyses,we were able to identify several key genes related to flavonoid and carotenoid biosynthesis.This study provides the basis for further genetic analyses of highly heterozygous tetraploid roses and could facilitate the progress of marker-assisted selection in modern roses.
文摘In this study, we reported the repaid construction of a molecular marker linkage map of rice (Oryza sativa L.). An F-2 population from the cross between Annong S-1 and Nanjing 11 was used to construct a genetic linkage map of rice. Total of 142 newly screened AFLP markers and 30 anchor markers (25 SSR markers and 5 RFLP markers) were mapped on the 12 chromosomes covering 1537.4 cM of rice genome. The average interval between these markers was 9.0 cM. The total work which usually was finished in more than one year was finished within only 3 months by one person. This is the first plant AFLP map developed in China. A new thermosensitive genic male sterile gene in rice, tms5, was Egged and mapped onto chromosome 2 during the development of the linkage map.
基金the National Natural Science Foundation of China (30671270)the Hi-Tech Research and Development (863) Program of China(2006AA10Z1E9 and 2006AA100101)
文摘Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.