期刊文献+
共找到8,485篇文章
< 1 2 250 >
每页显示 20 50 100
基于GA-BP神经网络的碳纤维复合芯导线压接缺陷识别方法
1
作者 杜志叶 黄子韧 +2 位作者 俸波 岳国华 廖永力 《电工技术学报》 北大核心 2026年第1期315-328,共14页
碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出... 碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出一种碳纤维复合芯导线压接缺陷的漏磁检测信号缺陷特征提取方法。通过实验优化,以漏磁检测信号数据中7个峰值点的幅值、21个相对位置信息和7个波形类型信息作为缺陷判断特征值,有效地提高了缺陷种类和缺陷程度识别的准确度。对碳纤维芯导线进行磁性制备,并研制相对应的漏磁检测装置,生产106根不同类型、不同程度的碳纤维芯压接缺陷样品,得到613组漏磁检测信号数据并完成特征值提取,搭建基于遗传算法(GA)的反向传播(BP)神经网络。实测数据表明,该方法可以有效地完成对碳纤维复合芯导线压接缺陷类型的识别,同时对缺陷程度的识别准确率可达到94.31%。 展开更多
关键词 碳纤维复合芯导线 缺陷识别 磁性制备 漏磁检测 遗传算法 bp神经网络
在线阅读 下载PDF
Gesture Recognition Based on BP Neural Network Improved by Chaotic Genetic Algorithm 被引量:18
2
作者 Dong-Jie Li Yang-Yang Li +1 位作者 Jun-Xiang Li Yu Fu 《International Journal of Automation and computing》 EI CSCD 2018年第3期267-276,共10页
Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the... Aim at the defects of easy to fall into the local minimum point and the low convergence speed of back propagation(BP)neural network in the gesture recognition, a new method that combines the chaos algorithm with the genetic algorithm(CGA) is proposed. According to the ergodicity of chaos algorithm and global convergence of genetic algorithm, the basic idea of this paper is to encode the weights and thresholds of BP neural network and obtain a general optimal solution with genetic algorithm, and then the general optimal solution is optimized to the accurate optimal solution by adding chaotic disturbance. The optimal results of the chaotic genetic algorithm are used as the initial weights and thresholds of the BP neural network to recognize the gesture. Simulation and experimental results show that the real-time performance and accuracy of the gesture recognition are greatly improved with CGA. 展开更多
关键词 Gesture recognition back propagation bp neural network chaos algorithm genetic algorithm data glove.
原文传递
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:23
3
作者 LONG Jiangqi LAN Fengchong +1 位作者 CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet... For optimal design of mechanical clinching steel-aluminum joints,the back propagation(BP)neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,sheet hardness,joint bottom diameter etc.,and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body.Genetic algorithm(GA)is adopted to optimize the back-propagation neural network connection weights.The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters.The training samples'parameters and the corresponding joints'mechanical properties are supplied to the artificial neural network(ANN)for training.The validating samples'experimental data is used for checking up the prediction outputs.The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network.The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints.The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm bp neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
Forward and backward models for fault diagnosis based on parallel genetic algorithms 被引量:10
4
作者 Yi LIU Ying LI +1 位作者 Yi-jia CAO Chuang-xin GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1420-1425,共6页
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul... In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems. 展开更多
关键词 Forward and backward models Fault diagnosis Global single-population master-slave genetic algorithms (GPGAs) Parallel computation
在线阅读 下载PDF
Optimization of Biodynamic Seated Human Models Using Genetic Algorithms 被引量:5
5
作者 Wael Abbas Ossama B. Abouelatta +2 位作者 Magdi El-Azab Mamdouh Elsaidy Adel A. Megahed 《Engineering(科研)》 2010年第9期710-719,共10页
Many biodynamic models have been derived using trial and error curve-fitting technique, such that the error between the computed and measured biodynamic response functions is minimum. This study developed a biomechani... Many biodynamic models have been derived using trial and error curve-fitting technique, such that the error between the computed and measured biodynamic response functions is minimum. This study developed a biomechanical model of the human body in a sitting posture without backrest for evaluating the vibration transmissibility and dynamic response to vertical vibration direction. In describing the human body motion, a three biomechanical models are discussed (two models are 4-DOF and one model 7-DOF). Optimization software based on stochastic techniques search methods, Genetic Algorithms (GAs), is employed to determine the human model parameters imposing some limit constraints on the model parameters. In addition, an objective function is formulated comprising the sum of errors between the computed and actual values (experimental data). The studied functions are the driving-point mechanical impedance, apparent mass and seat- to-head transmissibility functions. The optimization process increased the average goodness of fit and the results of studied functions became much closer to the target values (Experimental data). From the optimized model, the resonant frequencies of the driver parts computed on the basis of biodynamic response functions are found to be within close bounds to that expected for the human body. 展开更多
关键词 Biodynamic RESPONSE Seated HUMAN models Simulation genetic algorithmS
暂未订购
Optimization Design of Fairings for VIV Suppression Based on Data-Driven Models and Genetic Algorithm 被引量:1
6
作者 LIU Xiu-quan JIANG Yong +3 位作者 LIU Fu-lai LIU Zhao-wei CHANG Yuan-jiang CHEN Guo-ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期153-158,共6页
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be... Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design. 展开更多
关键词 optimization design vortex induced vibration suppression devices data-driven models bp neural network genetic algorithm
在线阅读 下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
7
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 genetic algorithm parameter optimization PID control bp neural network heating furnace
在线阅读 下载PDF
基于遗传算法优化BP神经网络的锂电池容量预测研究
8
作者 何法 韩志 +1 位作者 李彦超 刘菲菲 《汽车技术》 北大核心 2026年第1期45-50,共6页
为了实现对锂电池剩余容量的精确预测,提出了基于遗传算法-反向传播(GA-BP)神经网络算法的锂电池容量预测方法,该方法将遗传算法引入到神经网络的参数训练过程中,以提升模型的预测精度。通过搜集、预处理美国国家航空航天局(NASA)锂离... 为了实现对锂电池剩余容量的精确预测,提出了基于遗传算法-反向传播(GA-BP)神经网络算法的锂电池容量预测方法,该方法将遗传算法引入到神经网络的参数训练过程中,以提升模型的预测精度。通过搜集、预处理美国国家航空航天局(NASA)锂离子电池包括放电起始电压、放电终止电压、放电电压差、放电最高温度、容量增量峰值等数据,设计了BP神经网络的结构,并通过遗传算法优化了神经网络参数。仿真分析表明,基于GA-BP算法的锂离子电池容量估算的精度和准确度都达到了较好的效果。 展开更多
关键词 锂电池容量 预测 bp神经网络 遗传算法
在线阅读 下载PDF
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
9
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 Variogram modelling genetic algorithm(GA) Machine learning Gravity data Mineral exploration
在线阅读 下载PDF
Optimization of Operating Parameters for Underground Gas Storage Based on Genetic Algorithm
10
作者 Yuming Luo Wei Zhang +7 位作者 Anqi Zhao Ling Gou Li Chen Yaling Yang Xiaoping Wang Shichang Liu Huiqing Qi Shilai Hu 《Energy Engineering》 2025年第8期3201-3221,共21页
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr... This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability. 展开更多
关键词 Underground gas storage operational parameter optimization extreme peak-shaving constraints genetic algorithm MODEL
在线阅读 下载PDF
基于SSA-BP神经网络的库区边坡变形时序预测研究
11
作者 武益民 张成良 张焕雄 《水电能源科学》 北大核心 2026年第1期177-181,共5页
针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网... 针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网络的初始权值和阈值进行全局优化,增强其收敛效率和适应性,并基于张家湾边坡历时5个月的真实位移监测数据进行训练。为验证模型优势,将SSA-BP模型与基于遗传算法(GA)和粒子群算法(PSO)优化的BP网络进行性能比对。研究表明,模型在24次迭代内快速收敛,显著优于对比模型,其均方根误差(RRMSE)、平均绝对百分比误差(M MAPE)、决定系数(R2)等评价指标均表现最佳。SSA-BP模型为库区边坡位移预测提供了一种可靠且高效的智能方法。 展开更多
关键词 库区边坡 位移变形预测 麻雀搜索算法(SSA) bp网络模型优化
原文传递
Advanced 3D Wind Farm Layout Optimization Framework via Power-Law Perturbation-Based Genetic Algorithm
12
作者 Jiaru Yang Yaotong Song +3 位作者 Jun Tang Weiping Ding Zhenyu Lei Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2314-2328,共15页
The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimiz... The modeling and optimization of wind farm layouts can effectively reduce the wake effect between turbine units,thereby enhancing the expected output power and avoiding negative influence.Traditional wind farm optimization often uses idealized wake models,neglecting the influence of wind shear at different elevations,which leads to a lack of precision in estimating wake effects and fails to meet the accuracy and reliability requirements of practical engineering.To address this,we have constructed a three-dimensional 3D wind farm optimization model that incorporates elevation,utilizing a 3D wake model to better reflect real-world conditions.We aim to assess the optimization state of the algorithm and provide strong incentives at the right moments to ensure continuous evolution of the population.To this end,we propose an evolutionary adaptation degreeguided genetic algorithm based on power-law perturbation(PPGA)to adapt multidimensional conditions.We select the offshore wind power project in Nantong,Jiangsu,China,as a study example and compare PPGA with other well-performing algorithms under this practical project.Based on the actual wind condition data,the experimental results demonstrate that PPGA can effectively tackle this complex problem and achieve the best power efficiency. 展开更多
关键词 3D wake model China’s southeastern coast metaheuristic offshore wind farm power-law perturbation-based genetic algorithm(PPGA)
在线阅读 下载PDF
Fragile Watermarking of 3D Models Using Genetic Algorithms
13
作者 Mukesh Motwani Rakhi Motwani Frederick Harris 《Journal of Electronic Science and Technology》 CAS 2010年第3期244-250,共7页
This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This pose... This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification. 展开更多
关键词 3D mesh models fragile water- marking genetic algorithms SNR.
在线阅读 下载PDF
Demarcation of potential seismic sources on integration of genetic algorithm and BP algorithm
14
作者 ZHOU Qing(周庆) +1 位作者 YE Hong(叶洪) 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第6期677-682,共6页
In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combinati... In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combination rapidly in an infinite solution space for artificial neural networks (ANN). The results show that the distribution of potential seismic sources with different upper magnitude demarcated by this classifier is mostly satisfied the intrinsic relationship between seismic environment and earthquake occurrence, with less effect from subjective judgment of human being. 展开更多
关键词 genetic algorithm bp algorithm potential seismic sources
在线阅读 下载PDF
Development and Application of a Modified Genetic Algorithm for Estimating Parameters in GMA Models
15
作者 José A. Hormiga Carlos González-Alcón Néstor V. Torres 《Applied Mathematics》 2014年第16期2447-2457,共11页
In this work we introduce a modified version of the simple genetic algorithm (MGA) and will show the results of its application to two GMA power law models (a general theoretical branched pathway system and a mathemat... In this work we introduce a modified version of the simple genetic algorithm (MGA) and will show the results of its application to two GMA power law models (a general theoretical branched pathway system and a mathematical model of the amplification and responsiveness of the JAK2/STAT5 pathway representing an actual, experimentally studied system). The two case studies serve to illustrate the utility and potentialities of the MGA method for concerning parameter estimation in complex models of biological significance. The analysis of the results obtained from the application of the MGA algorithm allows an evaluation of the potentialities and shortcomings of the proposed algorithm when compared with other parameter estimation algorithm such as the simple genetic algorithm (SGA) and the simulated annealing (SA). MGA shows better performance in both studied cases than SGA and SA, either in the presence or absence of noise. It is suggested that these advantages are due to the fact that the objective function definition in the MGA could include the experimental error as a weight factor, thus minimizing the distance between the data and the predicted value. Actually, MGA is slightly slower that the SGA and the SA, but this limitation is compensated by its greater efficiency in finding objective values closer to the global optimum. Finally, MGA can lead to an early local optimum, but this shortcoming may be prevented by providing a great population diversity through the insertion of different selection processes. 展开更多
关键词 Parameter Estimation genetic algorithms GMA models MODEL Calibration INVERSION Methods JAK2/STAT5 PATHWAY MODEL
暂未订购
Prediction of Low-Energy Building Energy Consumption Based on Genetic BP Algorithm
16
作者 Yanhua Lu Xuehui Gong Andrew Byron Kipnis 《Computers, Materials & Continua》 SCIE EI 2022年第9期5481-5497,共17页
Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by us... Combined with the energy consumption data of individual buildings in the logistics group of Yangtze University,the analysis model scheme of energy consumption of individual buildings in the university is studied by using Back Propagation(BP)neural network to solve nonlinear problems and have the ability of global approximation and generalization.By analyzing the influence of different uses,different building surfaces and different energysaving schemes on the change of building energy consumption,the grey correlation method is used to determine the main influencing factors affecting each building energy consumption,including uses,building surfaces and energy-saving schemes,which are used as the input of the model and the building energy consumption as the output of the model,so as to establish the building energy consumption analysis model based on BP neural network.However,in practical application,BP neural network has the defects of slow convergence and easy to fall into local minima.In view of this,this paper uses genetic algorithm to optimize the weight and threshold of BP neural network,completes the improvement of various building energy consumption analysis models,and realizes the qualitative analysis of building energy consumption.The model verification results show that the viscosity of the building energy consumption analysis model based on genetic algorithm improved BP neural network algorithm(GABP)in this paper is relatively high,which is more accurate than the results of the traditional BP neural network model,and the relative error of the analysis model is reduced from 11.56%to 8.13%,which proves that the GABP can be better suitable for the study of school building energy consumption analysis model,It is applied to the prediction of building energy consumption,which lays a foundation for the realization of carbon neutralization in the South expansion plan of Yangtze University. 展开更多
关键词 Energy consumption analysis model bp neural network genetic algorithm
在线阅读 下载PDF
Genetic Algorithm for Concurrent Balancing of Mixed-Model Assembly Lines with Original Task Times of Models 被引量:1
17
作者 Panneerselvam Sivasankaran Peer Mohamed Shahabudeen 《Intelligent Information Management》 2013年第3期84-92,共9页
The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a... The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem. 展开更多
关键词 Assembly Line Balancing Cycle Time genetic algorithm CROSSOVER Operation Mixed-Model
暂未订购
Evaluation of volcanic reservoirs with the "QAPM mineral model" using a genetic algorithm 被引量:8
18
作者 潘保芝 薛林福 +2 位作者 黄布宙 闫桂京 张丽华 《Applied Geophysics》 SCIE CSCD 2008年第1期1-8,共8页
Gas-bearing volcanic reservoirs have been found in the deep Songliao Basin, China. Choosing proper interpretation parameters for log evaluation is difficult due to complicated mineral compositions and variable mineral... Gas-bearing volcanic reservoirs have been found in the deep Songliao Basin, China. Choosing proper interpretation parameters for log evaluation is difficult due to complicated mineral compositions and variable mineral contents. Based on the QAPF classification scheme given by IUGS, we propose a method to determine the mineral contents of volcanic rocks using log data and a genetic algorithm. According to the QAPF scheme, minerals in volcanic rocks are divided into five groups: Q(quartz), A (Alkaline feldspar), P (plagioclase), M (mafic) and F (feldspathoid). We propose a model called QAPM including porosity for the volumetric analysis of reservoirs. The log response equations for density, apparent neutron porosity, transit time, gamma ray and volume photoelectrical cross section index were first established with the mineral parameters obtained from the Schlumberger handbook of log mineral parameters. Then the volumes of the four minerals in the matrix were calculated using the genetic algorithm (GA). The calculated porosity, based on the interpretation parameters, can be compared with core porosity, and the rock names given in the paper based on QAPF classification according to the four mineral contents are compatible with those from the chemical analysis of the core samples. 展开更多
关键词 QAPM mineral model well logs genetic algorithm volcanic reservoirs
在线阅读 下载PDF
Dynamic finite element model updating using meta-model and genetic algorithm 被引量:3
19
作者 费庆国 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期213-217,共5页
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori... Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%. 展开更多
关键词 finite element model model updating response surface model genetic algorithm
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
20
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (bp model) OPTIMIZATION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部