期刊文献+
共找到313篇文章
< 1 2 16 >
每页显示 20 50 100
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
1
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
在线阅读 下载PDF
Iterated Function System-Based Crossover Operation for Real-Coded Genetic Algorithm
2
作者 S. H. Ling 《Journal of Intelligent Learning Systems and Applications》 2015年第2期37-41,共5页
An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity character... An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs better searching solution with a faster convergence in a set of benchmark test functions. 展开更多
关键词 genetic algorithm ITERATED FUNCTION SYSTEM crossover operation
在线阅读 下载PDF
A Genetic Algorithm for the Flowshop Scheduling Problem
3
作者 Qi Yuesheng Wang Baozhong Kang Lishan(State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1998年第4期410-412,共3页
The flowshop scheduling problem is NP complete. To solve it by genetic algorithm, an efficient crossover operator is designed. Compared with another crossover operator, this one often finds a better solution within th... The flowshop scheduling problem is NP complete. To solve it by genetic algorithm, an efficient crossover operator is designed. Compared with another crossover operator, this one often finds a better solution within the same time. 展开更多
关键词 genetic algorithm crossover operator flowshop scheduling problem combinatorial optimization
在线阅读 下载PDF
An adaptive genetic algorithm for solving bilevel linear programming problem
4
作者 王广民 王先甲 +1 位作者 万仲平 贾世会 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第12期1605-1612,共8页
Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this pr... Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems. Various methods are proposed for solving this problem. Of all the algorithms, the ge- netic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes maybe infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references. 展开更多
关键词 bilevel linear programming genetic algorithm fitness value adaptive operator probabilities crossover and mutation
在线阅读 下载PDF
On Some Basic Concepts of Genetic Algorithms as a Meta-Heuristic Method for Solving of Optimization Problems
5
作者 Milena Bogdanovic 《Journal of Software Engineering and Applications》 2011年第8期482-486,共5页
The genetic algorithms represent a family of algorithms using some of genetic principles being present in nature,in order to solve particular computational problems.These natural principles are:inheritance,crossover,m... The genetic algorithms represent a family of algorithms using some of genetic principles being present in nature,in order to solve particular computational problems.These natural principles are:inheritance,crossover,mutation,survival of the fittest,migrations and so on.The paper describes the most important aspects of a genetic algorithm as a stochastic method for solving various classes of optimization problems.It also describes the basic genetic operator selection,crossover and mutation,serving for a new generation of individuals to achieve an optimal or a good enough solution of an optimization problem being in question. 展开更多
关键词 genetic algorithm Individuals genetic operator SELECTION crossover MUTATION
暂未订购
Genetic Algorithm for Concurrent Balancing of Mixed-Model Assembly Lines with Original Task Times of Models 被引量:1
6
作者 Panneerselvam Sivasankaran Peer Mohamed Shahabudeen 《Intelligent Information Management》 2013年第3期84-92,共9页
The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a... The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem. 展开更多
关键词 Assembly Line Balancing Cycle Time genetic algorithm crossover operation Mixed-Model
暂未订购
A Neurocomputing Model for Binary Coded Genetic Algorithm
7
作者 GongDaoxiong RuanXiaogang 《工程科学(英文版)》 2004年第3期85-91,共7页
A neurocomputing model for Genetic Algorithm (GA) to break the speed bottleneck of GA was proposed. With all genetic operations parallel implemented by NN-based sub-modules, the model integrates both the strongpoint o... A neurocomputing model for Genetic Algorithm (GA) to break the speed bottleneck of GA was proposed. With all genetic operations parallel implemented by NN-based sub-modules, the model integrates both the strongpoint of parallel GA (PGA) and those of hardware GA (HGA). Moreover a new crossover operator named universe crossover was also proposed to suit the NN-based realization. This model was tested with a benchmark function set, and the experimental results validated the potential of the neurocomputing model. The significance of this model means that HGA and PGA can be integrated and the inherent parallelism of GA can be explicitly and farthest realized, as a result, the optimization speed of GA will be accelerated by one or two magnitudes compered to the serial implementation with same speed hardware, and GA will be turned from an algorithm into a machine. 展开更多
关键词 神经计算模型 二进制编码 遗传算法 神经网络 交叉算子 并行计算
在线阅读 下载PDF
Parameters inversion of high central core rockfill dams based on a novel genetic algorithm 被引量:17
8
作者 ZHOU Wei LI Shao Lin +3 位作者 MA Gang CHANG Xiao Lin MA Xing ZHANG Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期783-794,共12页
Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical propertie... Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical properties of rockfill from laboratory tests. Parameters inversion based on in situ monitoring data has been proven to be an efficient method for identifying the exact parameters of the rockfill. In this paper, we propose a modified genetic algorithm to solve the high-dimension multimodal and nonlinear optimal parameters inversion problem. A novel crossover operator based on the sum of differences in gene fragments(So DX) is proposed, inspired by the cloning of superior genes in genetic engineering. The crossover points are selected according to the difference in the gene fragments, defining the adaptive length. The crossover operator increases the speed and accuracy of algorithm convergence by reducing the inbreeding and enhancing the global search capability of the genetic algorithm. This algorithm is compared with two existing crossover operators. The modified genetic algorithm is then used in combination with radial basis function neural networks(RBFNN) to perform the parameters back analysis of a high central earth core rockfill dam. The settlements simulated using the identified parameters show good agreement with the monitoring data, illustrating that the back analysis is reasonable and accurate. The proposed genetic algorithm has considerable superiority for nonlinear multimodal parameter identification problems. 展开更多
关键词 rockfill dam parameters back analysis genetic algorithm crossover operator sum of differences in gene fragments
原文传递
A REAL-VALUED GENETIC ALGORITHM FOR OPTIMIZATION PROBLEM WITH CONTINUOUS VARIABLES
9
作者 严卫 朱兆达 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期4-8,共5页
A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera... A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm. 展开更多
关键词 OPTIMIZATION neural networks genetic algorithm crossover operator and mutation operator
在线阅读 下载PDF
GA and PSO culled hybrid technique for economic dispatch problem with prohibited operating zones 被引量:4
10
作者 SUDHAKARAN M. AJAY-D-VIMALRAJ P. PALANIVELU T.G. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期896-903,共8页
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c... This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB. 展开更多
关键词 Economic dispatch (ED) genetic algorithm (GA) Particle swarm optimization (PSO) Hybrid GAPSO Prohibited operating zone crossover MUTATION Velocity
在线阅读 下载PDF
A NEW OPTIMIZATION ALGORITHM BASED ON THE PRINCIPLE OF EVOLUTION 被引量:2
11
作者 Yan Wei Zhu Zhaoda(Nanjing University of Aeronautics and Astronautics, Nanjing 210016) 《Journal of Electronics(China)》 1998年第3期248-253,共6页
A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential tra... A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm. 展开更多
关键词 genetic algorithm crossover and MUTATION operatorS Global optimization
在线阅读 下载PDF
Design of a Heuristic Topology Generation Algorithm in Multi-Domain Optical Networks
12
作者 Lei Wang Huayang Feng +1 位作者 Li Lin Li Du 《Communications and Network》 2018年第3期65-77,共13页
Designing an excellent original topology not only improves the accuracy of routing, but also improves the restoring rate of failure. In this paper, we propose a new heuristic topology generation algorithm—GA-PODCC (G... Designing an excellent original topology not only improves the accuracy of routing, but also improves the restoring rate of failure. In this paper, we propose a new heuristic topology generation algorithm—GA-PODCC (Genetic Algorithm based on the Pareoto Optimality of Delay, Configuration and Consumption), which utilizes a genetic algorithm to optimize the link delay and resource configuration/consumption. The novelty lies in designing the two stages of genetic operation: The first stage is to pick the best population by means of the crossover, mutation, and selection operation;The second stage is to select an excellent individual from the best population. The simulation results show that, using the same number of nodes, GA-PODCC algorithm improves the balance of all the three optimization objectives, maintaining a low level of distortion in topology aggregation. 展开更多
关键词 TOPOLOGY Generation genetic algorithm crossover operation TOPOLOGY AGGREGATION
在线阅读 下载PDF
基于改进遗传算法的RRRP型康复机器人逆解研究
13
作者 杜群星 曹东兴 张宇婷 《机械设计》 北大核心 2025年第10期57-65,共9页
通过下肢康复运动训练治疗,可以实现人体神经功能的重组,从而获得有效的治疗效果。为解决冗余自由度的RRRP平面康复机器人的运动学逆解问题,采用改进自适应交叉遗传算法将运动学逆解转化为最优化问题。根据旋量理论建立机构正运动学模... 通过下肢康复运动训练治疗,可以实现人体神经功能的重组,从而获得有效的治疗效果。为解决冗余自由度的RRRP平面康复机器人的运动学逆解问题,采用改进自适应交叉遗传算法将运动学逆解转化为最优化问题。根据旋量理论建立机构正运动学模型并对机构进行奇异性分析,并基于最佳柔顺性原则建立关节角度目标函数,结合末端位姿误差约束建立适应度函数,使机器人在满足位姿误差要求时还具有最佳柔顺性。采用自适应罚函数平衡姿态误差和位置误差的不同精度需求,避免算法陷入局部最优解。引入启发式交叉算子,并采用自适应交叉变异概率,提高了算法的收敛速度。采用Markov证明了算法的收敛性并进行仿真试验,结果表明:改进后的算法收敛精度和稳定性均优于传统的遗传算法。 展开更多
关键词 冗余自由度 运动学逆解 遗传算法 柔顺性 自适应交叉算子
原文传递
基于多方向交叉算子的改进实数遗传算法研究
14
作者 宋莹莹 闫菲菲 陈信新 《工业控制计算机》 2025年第6期77-78,共2页
针对实数遗传算法在求解复杂参数优化问题时容易陷入局部最优区域和求解精度低等问题,提出一种改进实数遗传算法(IRCGA)。算法改进之处在于引入了截断排序分组选择(TSGS)算子和多方向交叉(MCX)算子。TSGS算子按截断阈值从种群中截取一... 针对实数遗传算法在求解复杂参数优化问题时容易陷入局部最优区域和求解精度低等问题,提出一种改进实数遗传算法(IRCGA)。算法改进之处在于引入了截断排序分组选择(TSGS)算子和多方向交叉(MCX)算子。TSGS算子按截断阈值从种群中截取一定数量的优质个体进行分组配对操作,能够在保留优质父代基因的同时增大配对个体差异性,有助于维持种群多样性。MCX算子通过产生多个交叉方向,提升子代个体质量,使算法具有较强的搜索能力和收敛速度。在20个基准测试函数和实际参数优化问题的基础上与其他算法进行仿真对比试验,验证IRCGA的有效性和可行性。 展开更多
关键词 实数遗传算法 选择算子 交叉算子 参数优化
在线阅读 下载PDF
柔性作业车间调度问题的两级遗传算法 被引量:105
15
作者 张超勇 饶运清 +1 位作者 李培根 邵新宇 《机械工程学报》 EI CAS CSCD 北大核心 2007年第4期119-124,共6页
研究不同性能指标柔性作业车间调度问题的优化。针对柔性作业车间调度问题的特点,设计基于工序编码和基于机器分配编码的两种交叉和变异算子,并提出一种双层子代产生模式的改进遗传算法应用于该调度问题,以使子代更好地继承父代的优良... 研究不同性能指标柔性作业车间调度问题的优化。针对柔性作业车间调度问题的特点,设计基于工序编码和基于机器分配编码的两种交叉和变异算子,并提出一种双层子代产生模式的改进遗传算法应用于该调度问题,以使子代更好地继承父代的优良特征。使用实例测试改进的遗传算法,并与其他遗传算法的测试结果进行比较,所提出算法的有效性得到证实。 展开更多
关键词 柔性作业车间调度 遗传算法 交叉算子 变异算子
在线阅读 下载PDF
基于POX交叉的遗传算法求解Job-Shop调度问题 被引量:126
16
作者 张超勇 饶运清 +1 位作者 刘向军 李培根 《中国机械工程》 EI CAS CSCD 北大核心 2004年第23期2149-2153,共5页
通过改进传统的遗传算法求解Job -Shop调度问题。为基于工序的编码提出了一种新的POX交叉算子 ,并与其他交叉算子进行了比较以显示其高效性。为了保留父代的优良特征和减少遗传算子的破坏性 ,设计了一种子代交替模式的交叉方式。将提出... 通过改进传统的遗传算法求解Job -Shop调度问题。为基于工序的编码提出了一种新的POX交叉算子 ,并与其他交叉算子进行了比较以显示其高效性。为了保留父代的优良特征和减少遗传算子的破坏性 ,设计了一种子代交替模式的交叉方式。将提出的改进遗传算法应用于muthandthompson’s基准问题的实验运行 ,显示该算法的有效性。 展开更多
关键词 车间作业调度 遗传算法 交叉算子 变异算子
在线阅读 下载PDF
基于排序的改进自适应遗传算法 被引量:14
17
作者 刘智明 贺新 +2 位作者 周激流 黎奎 宋宇 《信息与控制》 CSCD 北大核心 2004年第1期6-8,共3页
本文提出了一种改进的自适应遗传算法 ,其遗传算子由个体在种群中的排序位置自适应地决定 ,其中选择算子还引入了disruptiveselection的思想 .该算法能避免群体中超级个体的出现 ,维持了种群的多样性 ,加快了种群的收敛速度 ,克服了遗... 本文提出了一种改进的自适应遗传算法 ,其遗传算子由个体在种群中的排序位置自适应地决定 ,其中选择算子还引入了disruptiveselection的思想 .该算法能避免群体中超级个体的出现 ,维持了种群的多样性 ,加快了种群的收敛速度 ,克服了遗传算法早熟的现象 .函数优化的结果验证了该算法的有效性 . 展开更多
关键词 自适应遗传算法 选择算子 交叉算子 变异算子 收敛速度 鲁棒性 AGA
在线阅读 下载PDF
遗传算法中的交叉算子的述评 被引量:60
18
作者 李书全 孙雪 +1 位作者 孙德辉 边伟朋 《计算机工程与应用》 CSCD 2012年第1期36-39,共4页
交叉算子是遗传算法中的一种重要算子,对遗传算法中较成熟的交叉算子进行了简单介绍,在此基础上结合文献内容,从理论应用以及作用机理等几个方面对遗传算法中改进的交叉算子进行了分析和讨论,可以发现改进后的交叉算子能在一定程度上克... 交叉算子是遗传算法中的一种重要算子,对遗传算法中较成熟的交叉算子进行了简单介绍,在此基础上结合文献内容,从理论应用以及作用机理等几个方面对遗传算法中改进的交叉算子进行了分析和讨论,可以发现改进后的交叉算子能在一定程度上克服传统遗传算法的缺点,提高其搜索效率和精度,有效避免过早收敛。进一步提出遗传算法中交叉算子的未来研究方向,为今后遗传算法的应用和发展奠定了基础。 展开更多
关键词 遗传算法 交叉算子 优化
在线阅读 下载PDF
求解作业车间调度问题的一种改进遗传算法 被引量:54
19
作者 张超勇 饶运清 +1 位作者 李培根 刘向军 《计算机集成制造系统》 EI CSCD 北大核心 2004年第8期966-970,共5页
为克服传统遗传算法解决车间作业调度问题的局限性,综合遗传算法和局部搜索的优点,提出一种改进的遗传算法。为基于工序的编码提出了一种新的POX交叉算子。同时,为克服传统遗传算法在求解车间作业调度问题时的早熟收敛,设计了一种子代... 为克服传统遗传算法解决车间作业调度问题的局限性,综合遗传算法和局部搜索的优点,提出一种改进的遗传算法。为基于工序的编码提出了一种新的POX交叉算子。同时,为克服传统遗传算法在求解车间作业调度问题时的早熟收敛,设计了一种子代交替模式的交叉方式,并运用局部搜索改善交叉和变异后得到的调度解,将提出的改进遗传算法应用于MuthandThompson基准问题的实验运行,显示了该算法的有效性。 展开更多
关键词 车间作业调度 遗传算法 交叉算子 局部搜索
在线阅读 下载PDF
用改进的实数编码遗传算法估计反应动力学参数 被引量:27
20
作者 黄晓峰 潘立登 +1 位作者 陈标华 李成岳 《高校化学工程学报》 EI CAS CSCD 北大核心 1999年第1期50-55,共6页
通过理论分析和模拟实验研究了遗传算法中实数编码线性交叉操作的效率,提出了一种优化分布线性交叉操作策略,使子代个体在搜索空间内达到均匀分布,具有很高的搜索效率。用这种改进的实数编码遗传算法进行正丁烷选择氧化反应动力学参... 通过理论分析和模拟实验研究了遗传算法中实数编码线性交叉操作的效率,提出了一种优化分布线性交叉操作策略,使子代个体在搜索空间内达到均匀分布,具有很高的搜索效率。用这种改进的实数编码遗传算法进行正丁烷选择氧化反应动力学参数估计,取得了良好的效果。 展开更多
关键词 遗传算法 实数编码 参数 正丁烷 顺酐 动力学
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部