期刊文献+
共找到1,819篇文章
< 1 2 91 >
每页显示 20 50 100
Optimization of LSTM Ship Trajectory Prediction Based on Hybrid Genetic Algorithm 被引量:2
1
作者 ZHAO Pengfei 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期89-102,共14页
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit... Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction. 展开更多
关键词 trajectory prediction LSTM hybrid genetic algorithm
在线阅读 下载PDF
Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network 被引量:22
2
作者 LONG Jiangqi LAN Fengchong CHEN Jiqing YU Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期36-41,共6页
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,... For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints. 展开更多
关键词 genetic algorithm BP neural network mechanical clinching JOINT properties prediction
在线阅读 下载PDF
Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China 被引量:5
3
作者 Lin Chen Weibing Lin +3 位作者 Ping Chen Shu Jiang Lu Liu Haiyan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期828-838,共11页
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import... A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area. 展开更多
关键词 porosity prediction well logs back propagation neural network genetic algorithm Ordos Basin Yanchang Formation
原文传递
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
4
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
在线阅读 下载PDF
Network Security Incidents Frequency Prediction Based on Improved Genetic Algorithm and LSSVM 被引量:2
5
作者 ZHAO Guangyao ZOU Peng HAN Weihong 《China Communications》 SCIE CSCD 2010年第4期126-131,共6页
Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artifici... Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents. 展开更多
关键词 genetic algorithm LSSVM Network Security Incidents Time Series prediction
在线阅读 下载PDF
Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm 被引量:7
6
作者 F. Nakhaei M.R. Mosavi A. Sam 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期69-77,共9页
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce... Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error. 展开更多
关键词 Artificial neural network genetic algorithm Flotation column Grade Recovery prediction
在线阅读 下载PDF
Customized Prediction of Short Length of Stay Following Elective Cardiac Surgery in Elderly Patients Using a Genetic Algorithm 被引量:1
7
作者 Joon Lee Sapna Govindan +2 位作者 Leo A. Celi Kamal R. Khabbaz Balachundhar Subramaniam 《World Journal of Cardiovascular Surgery》 2013年第5期163-170,共8页
Objective: To develop a customized short LOS (gery, using local data and a computational feature selection algorithm. Design: Utilization of a machine learning algorithm in a prospectively collected STS database consi... Objective: To develop a customized short LOS (gery, using local data and a computational feature selection algorithm. Design: Utilization of a machine learning algorithm in a prospectively collected STS database consisting of patients who received cardiac surgery between January 2002 and June 2011. Setting: Urban tertiary-care center. Participants: Geriatric patients aged 70 years or older at the time of cardiac surgery. Interventions: None. Measurements and Main Results: Predefined morbidity and mortality events were collected from the STS database. 23 clinically relevant predictors were investigated for short LOS prediction with a genetic algorithm (GenAlg) in 1426 patients. Due to the absence of an STS model for their particular surgery type, STS risk scores were unavailable for 771 patients. STS prediction achieved an AUC of 0.629 while the GenAlg achieved AUCs of 0.573 (in those with STS scores) and 0.691 (in those without STS scores). Among the patients with STS scores, the GenAlg features significantly associated with shorter LOS were absence of congestive heart failure (CHF) (OR = 0.59, p = 0.04), aortic valve procedure (OR = 1.54, p = 0.04), and shorter cross clamp time (OR = 0.99, p = 0.004). In those without STS prediction, short LOS was significantly correlated with younger age (OR = 0.93, p 0.001), absence of CHF (OR = 0.53, p = 0.007), no preoperative use of beta blockers (OR = 0.66, p = 0.03), and shorter cross clamp time (OR = 0.99, p 0.001). Conclusion: While the GenAlg-based models did not outperform STS prediction for patients with STS risk scores, our local-data-driven approach reliably predicted short LOS for cardiac surgery types that do not allow STS risk calculation. We advocate that each institution with sufficient observational data should build their own cardiac surgery risk models. 展开更多
关键词 CARDIAC Surgery ELDERLY Length of Stay Risk prediction genetic algorithm
暂未订购
Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1
8
作者 屈吉鸿 黄强 +1 位作者 陈南祥 徐建新 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi... As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision. 展开更多
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model
在线阅读 下载PDF
A Genetic-Algorithm-based Neural Network Approach for Radioactive Activity Prediction 被引量:2
9
作者 WANG Lei TUO Xianguo +3 位作者 YAN Yucheng LIU Mingzhe CHENG Yi LI Pingchuan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2013年第6期12-16,共5页
In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabi... In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabilities of approximation of Artificial Neural Networks(ANN)and of global optimization of Genetic Algorithms(GA)so that the hybrid model can enhance capability of generalization and prediction accuracy,theoretically.With this model,both the number of hidden nodes and connection weights matrix in ANN are optimized using genetic operation.The real data sets are applied to the introduced method and the results are discussed and compared with the traditional Back Propagation(BP)neural network,showing the feasibility and validity of the proposed approach. 展开更多
关键词 神经网络方法 遗传算法 模型预测 放射性 人工神经网络 活性 逼近能力 全局优化
在线阅读 下载PDF
An Approach to Carbon Emissions Prediction Using Generalized Regression Neural Network Improved by Genetic Algorithm 被引量:1
10
作者 Zhida Guo Jingyuan Fu 《Electrical Science & Engineering》 2020年第1期4-10,共7页
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t... The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions. 展开更多
关键词 Carbon emissions genetic algorithm Generalized Regression Neural Network Smooth Factor prediction
在线阅读 下载PDF
Times Series Prediction to Basis of a Neural Network Conceived by a Real Genetic Algorithm
11
作者 Raihane Mechgoug Nourddine Golea Abdelmalik Taleb-Ahmed 《Computer Technology and Application》 2011年第3期219-226,共8页
Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorith... Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990. 展开更多
关键词 prediction time series artificial neural network genetic algorithm.
在线阅读 下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
12
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 STOCK Market genetic algorithm Bombay STOCK Exchange (BSE) Artificial Neural Network (ANN) prediction Forecasting Data AUTOREGRESSIVE (AR)
暂未订购
Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model
13
作者 GUO Qiang,LUO Chang-shou,WEI Qing-feng Institute of Information on Science and Technology of Agriculture,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China 《Asian Agricultural Research》 2011年第5期148-150,共3页
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm ... Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model. 展开更多
关键词 genetic algorithm NEURAL network VEGETABLES PRICE
在线阅读 下载PDF
NEURAL NETWORK PREDICTIVE CONTROL WITH HIERARCHICAL GENETIC ALGORITHM
14
作者 刘宝坤 王慧 李光泉 《Transactions of Tianjin University》 EI CAS 1998年第2期48-50,共3页
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da... A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness. 展开更多
关键词 neural networks(NN) predictive control hierarchical genetic algorithms nonlinear system
在线阅读 下载PDF
Co-DeepNet:A Cooperative Convolutional Neural Network for DNA Methylation-Based Age Prediction
15
作者 Najmeh Sadat Jaddi Mohammad Saniee Abadeh +4 位作者 Niousha Bagheri Khoulenjani Salwani Abdullah MohammadMahdi Ariannejad Mohd Zakree Ahmad Nazri Fatemeh Alvankarian 《CAAI Transactions on Intelligence Technology》 2025年第4期1118-1134,共17页
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d... Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis. 展开更多
关键词 age prediction convolutional neural network COOPERATIVE genetic algorithm knowledge transmission
在线阅读 下载PDF
Stroke Risk Prediction and Assessment Based on Big Data Analysis
16
作者 Menghan Gao Jiayin Chen Hongyan Gao 《Asia Pacific Journal of Clinical Medical Research》 2025年第1期1-12,共12页
Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,ran... Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,random forest,BP neural network and genetic algorithm optimization neural network algorithm was established by using a raw dataset including 10 characteristic variables such as gender,age,hypertension,heart disease,and 1 stroke target variable.The experimental results show that the average blood glucose level,body mass index,hypertension and other variables have a great impact on the risk of stroke,and the neural network algorithm optimized by the genetic algorithm performs slightly better than the other three models. 展开更多
关键词 STROKE BP Neural Network genetic algorithm Support Vector Machine Random Forest Risk prediction Evaluation
在线阅读 下载PDF
Rockburst Intensity Prediction based on Kernel Extreme Learning Machine(KELM)
17
作者 XIAO Yidong QI Shengwen +3 位作者 GUO Songfeng ZHANG Shishu WANG Zan GONG Fengqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期284-295,共12页
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ... As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications. 展开更多
关键词 rockburst intensity prediction kernel extreme learning machine genetic algorithm cross-entropy method
在线阅读 下载PDF
Prediction of wheel wear in light rail trains using an improved grey GM(1,1)model
18
作者 Yanyan ZHANG Xinwen YANG +2 位作者 Zhiang SUN Kaiwen XIANG Anguo ZUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第4期376-388,共13页
The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is su... The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction. 展开更多
关键词 Wheel wear prediction Grey model genetic algorithm(GA) Neural network Particle swarm optimization(PSO)
原文传递
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
19
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
20
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil prediction artificial neural networks genetic algorithm
原文传递
上一页 1 2 91 下一页 到第
使用帮助 返回顶部