Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import...A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.展开更多
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l...There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.展开更多
Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artifici...Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.展开更多
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce...Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error.展开更多
Objective: To develop a customized short LOS (gery, using local data and a computational feature selection algorithm. Design: Utilization of a machine learning algorithm in a prospectively collected STS database consi...Objective: To develop a customized short LOS (gery, using local data and a computational feature selection algorithm. Design: Utilization of a machine learning algorithm in a prospectively collected STS database consisting of patients who received cardiac surgery between January 2002 and June 2011. Setting: Urban tertiary-care center. Participants: Geriatric patients aged 70 years or older at the time of cardiac surgery. Interventions: None. Measurements and Main Results: Predefined morbidity and mortality events were collected from the STS database. 23 clinically relevant predictors were investigated for short LOS prediction with a genetic algorithm (GenAlg) in 1426 patients. Due to the absence of an STS model for their particular surgery type, STS risk scores were unavailable for 771 patients. STS prediction achieved an AUC of 0.629 while the GenAlg achieved AUCs of 0.573 (in those with STS scores) and 0.691 (in those without STS scores). Among the patients with STS scores, the GenAlg features significantly associated with shorter LOS were absence of congestive heart failure (CHF) (OR = 0.59, p = 0.04), aortic valve procedure (OR = 1.54, p = 0.04), and shorter cross clamp time (OR = 0.99, p = 0.004). In those without STS prediction, short LOS was significantly correlated with younger age (OR = 0.93, p 0.001), absence of CHF (OR = 0.53, p = 0.007), no preoperative use of beta blockers (OR = 0.66, p = 0.03), and shorter cross clamp time (OR = 0.99, p 0.001). Conclusion: While the GenAlg-based models did not outperform STS prediction for patients with STS risk scores, our local-data-driven approach reliably predicted short LOS for cardiac surgery types that do not allow STS risk calculation. We advocate that each institution with sufficient observational data should build their own cardiac surgery risk models.展开更多
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi...As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.展开更多
In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabi...In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabilities of approximation of Artificial Neural Networks(ANN)and of global optimization of Genetic Algorithms(GA)so that the hybrid model can enhance capability of generalization and prediction accuracy,theoretically.With this model,both the number of hidden nodes and connection weights matrix in ANN are optimized using genetic operation.The real data sets are applied to the introduced method and the results are discussed and compared with the traditional Back Propagation(BP)neural network,showing the feasibility and validity of the proposed approach.展开更多
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t...The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.展开更多
Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorith...Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.展开更多
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca...Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.展开更多
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm ...Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.展开更多
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da...A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.展开更多
Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation d...Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.展开更多
Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,ran...Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,random forest,BP neural network and genetic algorithm optimization neural network algorithm was established by using a raw dataset including 10 characteristic variables such as gender,age,hypertension,heart disease,and 1 stroke target variable.The experimental results show that the average blood glucose level,body mass index,hypertension and other variables have a great impact on the risk of stroke,and the neural network algorithm optimized by the genetic algorithm performs slightly better than the other three models.展开更多
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ...As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.展开更多
The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is su...The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction.展开更多
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr...Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
基金supported by the National Natural Science Foundation of China(No.41002045)。
文摘A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.
文摘There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters.
基金supported in part by the National High Technology Research and Development Program of China ("863" Program) (No.2007AA010502)
文摘Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.
基金the support of the Department of Research and Development of Sarcheshmeh copper plants for this research
文摘Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error.
文摘Objective: To develop a customized short LOS (gery, using local data and a computational feature selection algorithm. Design: Utilization of a machine learning algorithm in a prospectively collected STS database consisting of patients who received cardiac surgery between January 2002 and June 2011. Setting: Urban tertiary-care center. Participants: Geriatric patients aged 70 years or older at the time of cardiac surgery. Interventions: None. Measurements and Main Results: Predefined morbidity and mortality events were collected from the STS database. 23 clinically relevant predictors were investigated for short LOS prediction with a genetic algorithm (GenAlg) in 1426 patients. Due to the absence of an STS model for their particular surgery type, STS risk scores were unavailable for 771 patients. STS prediction achieved an AUC of 0.629 while the GenAlg achieved AUCs of 0.573 (in those with STS scores) and 0.691 (in those without STS scores). Among the patients with STS scores, the GenAlg features significantly associated with shorter LOS were absence of congestive heart failure (CHF) (OR = 0.59, p = 0.04), aortic valve procedure (OR = 1.54, p = 0.04), and shorter cross clamp time (OR = 0.99, p = 0.004). In those without STS prediction, short LOS was significantly correlated with younger age (OR = 0.93, p 0.001), absence of CHF (OR = 0.53, p = 0.007), no preoperative use of beta blockers (OR = 0.66, p = 0.03), and shorter cross clamp time (OR = 0.99, p 0.001). Conclusion: While the GenAlg-based models did not outperform STS prediction for patients with STS risk scores, our local-data-driven approach reliably predicted short LOS for cardiac surgery types that do not allow STS risk calculation. We advocate that each institution with sufficient observational data should build their own cardiac surgery risk models.
文摘As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.
基金Supported by National Natural Science Foundation of China(Nos.41025015,41104118,41274108,and 41274109)Special Program of Major Instruments of the Ministry of Science and Technology(No.2012YQ180118)+1 种基金Science and Technology Support Program of Sichuan Province(No.2013FZ0022)the Creative Team Program of Chengdu University of Technology(No.KYTD201301)
文摘In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabilities of approximation of Artificial Neural Networks(ANN)and of global optimization of Genetic Algorithms(GA)so that the hybrid model can enhance capability of generalization and prediction accuracy,theoretically.With this model,both the number of hidden nodes and connection weights matrix in ANN are optimized using genetic operation.The real data sets are applied to the introduced method and the results are discussed and compared with the traditional Back Propagation(BP)neural network,showing the feasibility and validity of the proposed approach.
文摘The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.
文摘Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990.
文摘Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency.
文摘Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.
文摘A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness.
基金supported by the Universiti Kebangsaan Malaysia(DIP-2016-024).
文摘Prediction of the age of each individual is possible using the changing pattern of DNA methylation with age.In this paper an age prediction approach to work out multivariate regression problems using DNA methylation data is developed.In this research study a convolutional neural network(CNN)-based model optimised by the genetic algorithm(GA)is addressed.This paper contributes to enhancing age prediction as a regression problem using a union of two CNNs and exchanging knowledge be-tween them.This specifically re-starts the training process from a possibly higher-quality point in different iterations and,consequently,causes potentially yeilds better results at each iteration.The method proposed,which is called cooperative deep neural network(Co-DeepNet),is tested on two types of age prediction problems.Sixteen datasets containing 1899 healthy blood samples and nine datasets containing 2395 diseased blood samples are employed to examine the method's efficiency.As a result,the mean absolute deviation(MAD)is 1.49 and 3.61 years for training and testing data,respectively,when the healthy data is tested.The diseased blood data show MAD results of 3.81 and 5.43 years for training and testing data,respectively.The results of the Co-DeepNet are compared with six other methods proposed in previous studies and a single CNN using four prediction accuracy measurements(R^(2),MAD,MSE and RMSE).The effectiveness of the Co-DeepNet and superiority of its results is proved through the statistical analysis.
基金2024 University-level Training Program for College Students'Innovation Entrepreneurship(No.202410060069)。
文摘Stroke is a common cardiovascular and cerebrovascular disease with high morbidity,high mortality and high disability rate.In this paper,a stroke risk prediction and evaluation model based on support vector machine,random forest,BP neural network and genetic algorithm optimization neural network algorithm was established by using a raw dataset including 10 characteristic variables such as gender,age,hypertension,heart disease,and 1 stroke target variable.The experimental results show that the average blood glucose level,body mass index,hypertension and other variables have a great impact on the risk of stroke,and the neural network algorithm optimized by the genetic algorithm performs slightly better than the other three models.
基金funded by National Natural Science Foundation of China(Grants Nos.41825018 and 42141009)the Second Tibetan Plateau Scientific Expedition and Research Program(Grants No.2019QZKK0904)。
文摘As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications.
基金supported by the National Natural Science Foundation of China(No.52178436)the Shanghai Collaborative Innovation Research Center for Multi-network&Multi-modal Rail Transit,China.
文摘The wheel wear of light rail trains is difficult to predict due to poor information and small data samples.However,the amount of wear gradually increases with the running mileage.The grey future prediction model is supposed to deal with this problem effectively.In this study,we propose an improved non-equidistant grey model GM(1,1)with background values optimized by a genetic algorithm(GA).While the grey model is not good enough to track data series with features of randomness and nonlinearity,the residual error series of the GA-GM(1,1)model is corrected through a back propagation neural network(BPNN).To further improve the performance of the GA-GM(1,1)-BPNN model,a particle swarm optimization(PSO)algorithm is implemented to train the weight and bias in the neural network.The traditional non-equidistant GM(1,1)model and the proposed GA-GM(1,1),GA-GM(1,1)-BPNN,and GA-GM(1,1)-PSO-BPNN models were used to predict the wheel diameter and wheel flange wear of the Changchun light rail train and their validity and rationality were verified.Benefitting from the optimization effects of the GA,neural network,and PSO algorithm,the performance ranking of the four methods from highest to lowest was GA-GM(1,1)-PSO-BPNN>GA-GM(1,1)-BPNN>GA-GM(1,1)>GM(1,1)in both the fitting and prediction zones.The GA-GM(1,1)-PSO-BPNN model performed best,with the lowest fitting and forecasting maximum relative error,mean absolute error,mean absolute percentage error,and mean squared error of all four models.Therefore,it is the most effective and stable model in field application of light rail train wheel wear prediction.
文摘Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.