期刊文献+
共找到439篇文章
< 1 2 22 >
每页显示 20 50 100
Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation 被引量:6
1
作者 Ebrahim Ghotbi Ravandi Reza Rahmannejad +1 位作者 Amir Ehsan Feili Monfared Esmaeil Ghotbi Ravandi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期733-737,共5页
Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations betw... Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP. 展开更多
关键词 Modulus of deformation(Em) DISPLACEMENT Numerical modeling genetic programming(gp) Back analysis
在线阅读 下载PDF
Linear-in-Parameter Models Based on Parsimonious Genetic Programming Algorithm and Its Application to Aero-Engine Start Modeling 被引量:3
2
作者 李应红 尉询楷 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期295-303,共9页
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio... A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM. 展开更多
关键词 aerospace propulsion system linear-in-parameter nonlinear model Parsimonious genetic programming (Pgp aero-engine dynamic start model
在线阅读 下载PDF
Genetic programming-based chaotic time series modeling 被引量:1
3
作者 张伟 吴智铭 杨根科 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1432-1439,共8页
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ... This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling. 展开更多
关键词 Chaotic time series analysis genetic programming modeling Nonlinear Parameter Estimation (NPE) Particle Swarm Optimization (PSO) Nonlinear system identification
在线阅读 下载PDF
Rapid Prototype Development Approach for Genetic Programming
4
作者 Pei He Lei Zhang 《Journal of Computer and Communications》 2024年第2期67-79,共13页
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ... Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals. 展开更多
关键词 genetic programming Grammatical Evolution Gene Expression programming Regression Analysis Mathematical modeling Rapid Prototype Development
在线阅读 下载PDF
Modeling Dynamic Systems by Using the Nonlinear Difference Equations Based on Genetic Programming
5
作者 Liu Mm, Hu Bao-qingSchool of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期243-248,共6页
When acquaintances of a model are little or the model is too complicate to build by using traditional time series methods, it is convenient for us to take advantage of genetic programming (GP) to build the model. Cons... When acquaintances of a model are little or the model is too complicate to build by using traditional time series methods, it is convenient for us to take advantage of genetic programming (GP) to build the model. Considering the complexity of nonlinear dynamic systems, this paper proposes modeling dynamic systems by using the nonlinear difference e-quation based on GP technique. First it gives the method, criteria and evaluation of modeling. Then it describes the modeling algorithm using GP. Finally two typical examples of time series are used to perform the numerical experiments. The result shows that this algorithm can successfully establish the difference equation model of dynamic systems and its predictive result is also satisfactory. 展开更多
关键词 dynamic systems the model of difference equation genetic programming
在线阅读 下载PDF
Improved Genetic Programming Algorithm Applied to Symbolic Regression and Software Reliability Modeling
6
作者 Yongqiang ZHANG Huifang CHENG Ruilan YUAN 《Journal of Software Engineering and Applications》 2009年第5期354-360,共7页
The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: t... The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: the first inves-tigates initializing population, the second investigates reproduction operator, the third investigates crossover operator, and the fourth investigates mutation operation. The IGP is examined in two domains and the results suggest that the IGP is more effective and more efficient than the canonical one applied in different domains. 展开更多
关键词 IMPROVED genetic programming SYMBOLIC Regression SOFTWARE Reliability model
暂未订购
A New Software Reliability Growth Model: Genetic-Programming-Based Approach
7
作者 Zainab ALRahamneh Mohammad Reyalat +2 位作者 Alaa F. Sheta Sulieman Bani-Ahmad Saleh Al-Oqeili 《Journal of Software Engineering and Applications》 2011年第8期476-481,共6页
A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it dif... A variety of Software Reliability Growth Models (SRGM) have been presented in literature. These models suffer many problems when handling various types of project. The reason is;the nature of each project makes it difficult to build a model which can generalize. In this paper we propose the use of Genetic Programming (GP) as an eVolutionary computation approach to handle the software reliability modeling problem. GP deals with one of the key issues in computer science which is called automatic programming. The goal of automatic programming is to create, in an automated way, a computer program that enables a computer to solve problems. GP will be used to build a SRGM which can predict accumulated faults during the software testing process. We evaluate the GP developed model and compare its performance with other common growth models from the literature. Our experiments results show that the proposed GP model is superior compared to Yamada S-Shaped, Generalized Poisson, NHPP and Schneidewind reliability models. 展开更多
关键词 SOFTWARE Reliability genetic programming modeling SOFTWARE FAULTS
在线阅读 下载PDF
A High Precision Comprehensive Evaluation Method for Flood Disaster Loss Based on Improved Genetic Programming 被引量:2
8
作者 ZHOU Yuliang LU Guihua +2 位作者 JIN Juliang TONG Fang ZHOU Ping 《Journal of Ocean University of China》 SCIE CAS 2006年第4期322-326,共5页
Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the... Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems. 展开更多
关键词 automatic modeling evaluation of flood disaster loss genetic algorithm genetic programming
在线阅读 下载PDF
Prediction of Concrete Faced Rock Fill Dams Settlements Using Genetic Programming Algorithm 被引量:3
9
作者 Seyed Morteza Marandi Seyed Mahmood VaeziNejad Elyas Khavari 《International Journal of Geosciences》 2012年第3期601-609,共9页
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a... In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived. 展开更多
关键词 CONCRETE FACED Rock-Fill DAMS SETTLEMENT genetic programming ALGORITHM Finite Element model
暂未订购
Efficient Graph-based Genetic Programming Representation with Multiple Outputs 被引量:1
10
作者 Edgar Galvan-Lopez 《International Journal of Automation and computing》 EI 2008年第1期81-89,共9页
In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is... In this work, we explore and study the implication of having more than one output on a genetic programming (GP) graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has a better overall performance in terms of consistency reaching feasible solutions. 展开更多
关键词 Interactivity within an individual (IWI) multiple interactive outputs in a single tree (MIOST) NEUTRALITY evolvable hardware genetic programming gp
在线阅读 下载PDF
GP Algorithm-Based Fourier Transform Infrared Spectrum Trend Term Removal Model
11
作者 Bo Yan Shuaihui Li Hao Chen 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期41-51,共11页
Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such ... Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios. 展开更多
关键词 Fourier transform infrared spectroscopy(FTIR) genetic programming(gp) trend term removal
在线阅读 下载PDF
基于GP-PS的分布式加工与装配多级车间调度规则自动设计方法
12
作者 邹杰 刘建军 曾创锋 《机电工程》 CAS 北大核心 2024年第9期1628-1640,共13页
分布式加工与装配多级制造系统由多个用于加工零件的作业车间和用于装配产品的一般流水车间组成。动态到达的订单涉及多层产品结构,零件需齐备之后才可装配。该类多级车间的管控涉及订单分配、加工和装配任务调度联合决策问题,其关键在... 分布式加工与装配多级制造系统由多个用于加工零件的作业车间和用于装配产品的一般流水车间组成。动态到达的订单涉及多层产品结构,零件需齐备之后才可装配。该类多级车间的管控涉及订单分配、加工和装配任务调度联合决策问题,其关键在于实现两级生产的精准化协同目的。针对分布式加工与装配多级车间调度问题,提出了一种基于GP-PS的分布式加工与装配多级车间调度规则自动设计方法。首先,以最小化订单拖期率为目标,建立了订单分配、加工和装配任务调度联合决策的数学模型;然后,提出了一种改进型遗传规划算法,用以集成进化多级调度规则,设计了一类种群优化机制来避免算法陷入局部收敛,同时嵌入了并行仿真技术,有效减少了训练时间;最后,进行了仿真实验,对改进型遗传算法的性能进行了验证。研究结果表明:人工规则组、标准遗传规划算法及改进型遗传算法得到的订单拖期率分别为6.44%、5.65%、2.67%。基于并行仿真优化的改进型GP算法较数十个优选的人工规则组及标准GP算法生成的最优规则组,能取得更明显的综合性能优势。使用该算法针对DPAMW调度问题自动设计一体化调度的多级规则是可行的、有效的。 展开更多
关键词 多级制造系统 分布式制造系统 分布式加工与装配多级车间 并行仿真优化的遗传规划算法 调度规则 遗传规划 仿真优化
在线阅读 下载PDF
基于强化学习与遗传算法的机器人并行拆解序列规划方法 被引量:2
13
作者 汪开普 马晓艺 +2 位作者 卢超 殷旅江 李新宇 《国防科技大学学报》 北大核心 2025年第2期24-34,共11页
在拆解序列规划问题中,为了提高拆解效率、降低拆解能耗,引入了机器人并行拆解模式,构建了机器人并行拆解序列规划模型,并设计了基于强化学习的遗传算法。为了验证模型的正确性,构造了混合整数线性规划模型。算法构造了基于目标导向的... 在拆解序列规划问题中,为了提高拆解效率、降低拆解能耗,引入了机器人并行拆解模式,构建了机器人并行拆解序列规划模型,并设计了基于强化学习的遗传算法。为了验证模型的正确性,构造了混合整数线性规划模型。算法构造了基于目标导向的编解码策略,以提高初始解的质量;采用Q学习来选择算法迭代过程中的最佳交叉策略和变异策略,以增强算法的自适应能力。在一个34项任务的发动机拆解案例中,通过与四种经典多目标算法对比,验证了所提算法的优越性;分析所得拆解方案,结果表明机器人并行拆解模式可以有效缩短完工时间,并降低拆解能耗。 展开更多
关键词 拆解序列规划 机器人并行拆解 混合整数线性规划模型 遗传算法 强化学习
在线阅读 下载PDF
混合GP-GA用于信息系统建模预测的研究 被引量:15
14
作者 唐丽珏 李淼 张建 《计算机工程与应用》 CSCD 北大核心 2004年第25期44-48,共5页
该文克服了传统建模方法在模型选取及参数估计方面的困难与不足,提出了利用改进的遗传程序设计和改进的遗传算法相结合的混合GP-GA算法。一方面,遗传程序设计中加入了简约压力项,控制了代码过度增长,实现了不加先验知识的简洁非线性模... 该文克服了传统建模方法在模型选取及参数估计方面的困难与不足,提出了利用改进的遗传程序设计和改进的遗传算法相结合的混合GP-GA算法。一方面,遗传程序设计中加入了简约压力项,控制了代码过度增长,实现了不加先验知识的简洁非线性模型的自动获取。另一方面,遗传算法采用Gray编码,随机整群抽样选择,以优化模型中的参数,这在一定程度上补偿了遗传程序设计在演化过程中具有较好结构的模型可能因为其中的参数未能达到最优而被淘汰的损失。仿真实例和实际应用均表明混合GP-GA算法优于普通的回归分析及单纯的遗传程序设计方法,提高了拟合和预测精度,并且更适合反映问题的实际情况。 展开更多
关键词 混合 遗传程序设计 遗传算法 简约压力项
在线阅读 下载PDF
一种求解GP-决策树权值矢量算法及应用 被引量:2
15
作者 王四春 张泰山 +2 位作者 殷志云 李日保 张楚文 《计算机应用》 CSCD 北大核心 2005年第4期739-741,共3页
提出一种基于遗传程序设计算法(GPA)求解决策树结点的权值矢量,并根据树结点的 错误率与分割后的错误率减少量构造GP 决策树算法的方法。该方法不但可以求解出树结点的权值 矢量,同时也确定了GP 决策树的结构。实验结果表明,应用GP... 提出一种基于遗传程序设计算法(GPA)求解决策树结点的权值矢量,并根据树结点的 错误率与分割后的错误率减少量构造GP 决策树算法的方法。该方法不但可以求解出树结点的权值 矢量,同时也确定了GP 决策树的结构。实验结果表明,应用GP 决策树算法能够正确完成对趋势预 测模型的选择。 展开更多
关键词 遗传程序设计算法 gp-决策树算法 模型选择
在线阅读 下载PDF
基于GP的病虫害预测系统的研究 被引量:2
16
作者 李淼 张建 +2 位作者 唐丽珏 张永进 方薇 《计算机工程与应用》 CSCD 北大核心 2005年第11期228-232,共5页
分析了遗传程序设计算法的特点,针对全局搜索优化中由于群体规模较大而产生的收敛率较低的问题,提出了加强初始群体的改进方法;并介绍了改进方法的实验过程,以及应用该方法开展的病虫害预测系统的建模过程。最后给出了在一定程度上的具... 分析了遗传程序设计算法的特点,针对全局搜索优化中由于群体规模较大而产生的收敛率较低的问题,提出了加强初始群体的改进方法;并介绍了改进方法的实验过程,以及应用该方法开展的病虫害预测系统的建模过程。最后给出了在一定程度上的具体实现。 展开更多
关键词 遗传程序设计 病虫害预测模型
在线阅读 下载PDF
GPS高程迭加拟合模型的研究 被引量:6
17
作者 高宁 高彩云 吴良才 《西安科技大学学报》 CAS 北大核心 2009年第3期339-343,共5页
为提高GPS高程拟合模型在逼近高程异常曲面时的逼近精度和可信度,探讨了GPS高程转换的迭加模型(遗传神经网络模型和神经网络综合模型)。通过实测的GPS水准数据对迭加模型和单一模型进行分析比较,结果表明迭加模型逼近高程的精度和可靠... 为提高GPS高程拟合模型在逼近高程异常曲面时的逼近精度和可信度,探讨了GPS高程转换的迭加模型(遗传神经网络模型和神经网络综合模型)。通过实测的GPS水准数据对迭加模型和单一模型进行分析比较,结果表明迭加模型逼近高程的精度和可靠性均高于单一模型。 展开更多
关键词 gpS高程 高程异常 遗传算法 神经网络 迭加模型
在线阅读 下载PDF
基于遗传程序设计的GP-决策树优化算法及应用 被引量:1
18
作者 王四春 张泰山 +2 位作者 殷志云 李日保 张楚文 《计算机工程与应用》 CSCD 北大核心 2005年第10期8-10,103,共4页
该文根据决策树结点的错误率与分割后的错误率减少量,提出一种新的基于遗传程序设计(GP)的GP-决策树优化算法。该算法不但可以求解出GP-决策树结点的权值矢量,同时也确定了GP-决策树的结构。实验结果表明,应用GP-决策树优化算法能够正... 该文根据决策树结点的错误率与分割后的错误率减少量,提出一种新的基于遗传程序设计(GP)的GP-决策树优化算法。该算法不但可以求解出GP-决策树结点的权值矢量,同时也确定了GP-决策树的结构。实验结果表明,应用GP-决策树优化算法能够正确完成对趋势预测模型的选择。 展开更多
关键词 遗传程序设计算法(gpA) gp-决策树优化算法 模型选择
在线阅读 下载PDF
基于自动定义函数GP的自适应建模研究 被引量:2
19
作者 唐丽珏 李淼 +1 位作者 张建 张勇进 《小型微型计算机系统》 CSCD 北大核心 2005年第6期1000-1003,共4页
遗传程序设计(GeneticProgramming,简称GP)在进化过程中由于种群多样性的损失,常导致低收敛性.本文尝试将自动定义函数引入到GP中克服这个问题,并应用于数据的自适应建模.文中将两者的性能进行了比较,实验表明自动定义函数的发现和使用... 遗传程序设计(GeneticProgramming,简称GP)在进化过程中由于种群多样性的损失,常导致低收敛性.本文尝试将自动定义函数引入到GP中克服这个问题,并应用于数据的自适应建模.文中将两者的性能进行了比较,实验表明自动定义函数的发现和使用增加了种群的多样性.它不仅降低了整个遗传程序的大小,还增加了GP搜索的计算有效性,提高了收敛性能,取得了满意的结果. 展开更多
关键词 自动定义函数 遗传程序设计 自适应建模
在线阅读 下载PDF
遗传小波神经网络的GPS高程拟合模型 被引量:10
20
作者 杨帆 于奇 《导航定位学报》 CSCD 2017年第2期131-134,共4页
针对小波神经网络模型参数优化方法的局限性,提出基于遗传小波神经网络的GPS高程拟合模型。该算法在小波神经网络GPS高程拟合模型的基础上,采用遗传算法优化小波神经网络的权值与阈值,获取小波神经网络的最优参数建立模型。通过实验分... 针对小波神经网络模型参数优化方法的局限性,提出基于遗传小波神经网络的GPS高程拟合模型。该算法在小波神经网络GPS高程拟合模型的基础上,采用遗传算法优化小波神经网络的权值与阈值,获取小波神经网络的最优参数建立模型。通过实验分析表明:该模型拟合精度要优于二次曲面拟合、小波神经网络与BP神经网络模型,避免了小波神经网络参数选择的随机性,有效提高了拟合的精度。 展开更多
关键词 gpS高程拟合 小波神经网络 遗传算法 模型优化
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部