With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction ...Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.展开更多
Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity le...Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity levels among different populations of tree peony varieties.The results showed that 34 bands were amplified using five pairs of cp SSR primers,with an average of 6.8 bands per primer pair.The average number of different alleles(N_(a)),effective alleles(N_(e)),Shannon's information index(I),diversity(H),and polymorphic information content(PIC)were 3.600,2.053,0.708,0.433,and 0.388,respectively.The PIC value was between 0.250 and 0.500,indicating a moderate level of polymorphism for the five cp SSR primer pairs.The genetic diversity levels of peony cultivars varied among different populations,with the Northwest population showing relatively lower levels(I=0.590,H=0.289,and PIC=0.263).A total of 52 haplotypes were identified in the four examined populations,and the number of haplotypes per population ranged from 11 to 22.Forty-four private haplotypes were detected across populations,and the Northwest population exhibiting the highest count of private haplotypes with 17.The mean number of effective number of haplotypes(N_(eh)),haplotypic richness(R_(h)),and diversity(H)were 8.351,6.824,and 0.893,respectively.Analysis of molecular variance indicated that genetic variation within tree peony germplasm was greater than that between germplasm resources,and the main variation was found within individuals of peony germplasm.Cluster analysis,principal coordinate analysis,and genetic structure analysis classified tree peonies from different origins into two groups,indicating a certain degree of genetic differentiation among these four tree peony cultivation groups.This study provides a theoretical basis for the exploration,utilization,and conservation of peony germplasm resources,as well as for research on the breeding of excellent varieties.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
The mussel is one of the main cultivated species in the world.A significant challenge faced by suspension-cultured mussels is the high incidence of mussel fall-off from cultivation ropes,adversely impacting harvest yi...The mussel is one of the main cultivated species in the world.A significant challenge faced by suspension-cultured mussels is the high incidence of mussel fall-off from cultivation ropes,adversely impacting harvest yields,which have been documented at commercial mussel farms in the United Kingdom,the United States of America,Canada,Spain,New Zealand and China.Byssus is an important attachment structure for marine mussels,and weakness in byssal thread attachment is a major factor leading to mussel detachment from ropes.To investigate the relationship between genetic variability and byssal thread phenotypic characteristics in the hard-shelled mussel(Mytilus coruscus),we collected three wild populations of M.coruscus from different latitudes in the East China Sea,including the Shengsi(SS),Jiaojiang(JJ),and Fuding(FD)populations.The genetic diversity and structure of these populations were investigated using 10 microsatellite loci.The mean observed heterozygosity(Ho)in the SS population was 0.44,higher than the mean Ho values of the JJ(0.40)and FD(0.39)populations.The mean inbreeding coefficients(F_(is))in the SS population was 0.20,lower than the mean F_(is)values of the JJ(0.33)and FD populations(0.40).These results revealed that the SS population exhibited higher genetic diversity compared to the other two populations.The different numbers of private alleles(P_(a))in the three populations,ranging from 10 to 17,suggest that these populations have experienced selective pressures from various environments.Moreover,genetic differentiation was observed in the genetic distance between the SS population and the other two populations.We also examined the phenotypic characteristics of their byssal threads.There were significant differences in byssus attachment strength among the three populations,with the SS population located at the highest latitude secreting more byssal threads and exhibiting greater byssal breaking force and plaque adhesion strength,while the Fuding(FD)population located at the lowest latitude had the weakest byssal attachment.The observed differentiation in private alleles and byssus phenotypes might suggest that the three wild populations have experienced different environmental selective pressures.This study provides insight for future genetic enhancement programs aimed at improving byssus attachment in M.coruscus.展开更多
BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,an...BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,and short stature.Approximately 60%-70%of patients with CCD have mutations in the RUNX family transcription factor 2 gene.However,prenatal diagnosis of CCD is difficult when the family history is unknown.CASE SUMMARY We report a rare case of fetal CCD with an unknown family history,confirmed by prenatal ultrasonography and genetic testing at a gestational age of 16 weeks.The genetic reports indicated that the fetus carried pathogenic mutations in the RUNX family transcription factor 2 gene(c.674G>A).After careful consideration,the pregnant woman and her family decided to continue the pregnancy.CONCLUSION Definitive prenatal diagnosis of CCD should include family history,ultrasound diagnosis,and genetic analysis,especially if family history is unknown.展开更多
Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly...Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly due to the use of low yielding landraces. It is necessary to carry out breeding programs that deal with the production of high yielding, adaptable new varieties. Therefore, this study aimed to estimate genetic variability, heritability, genotypic performance and interrelationships among the traits. Ten maize genotypes evaluated at White Nile Research Station Farm, Kosti, of the Agricultural Research Corporation (ARC), Wad Medani Sudan were planted in a randomized complete block design with three replications during the two seasons of 2021 and 2022. Most evaluated genotypes exhibited a wide and significant variation in the 11 measured traits. Genotypic coefficient of variation and genetic advance were recorded for days to 50% tasseling, ear diameter (cm), number of grains per row and grain yield (t/ha) in both seasons. High heritability and genetic advance were recorded for grain yield, ear length, ear height, plant height, number of rows per ear, ear weight, days to 50% tasseling, 100-grain weight and days to 50% silking. Moreover, there was a highly significant and positive correlation of grain yield with number of rows per ear (r = 0.479), ear length (r = 0.381), 100-grain weight (r = 0.344) and days to 50% tasseling (r = 0.214). The highest yielding five genotypes across the seasons were TZCOM1/ZDPSYN (4.2 t/ha), EEPVAH-3 (4.2 t/ha), F2TWLY131228 (4.1 t/ha), PVA SYN6F2 (3.9 t/ha) and EEPVAH-9 (3.8 t/ha) these were needed to check the adaptability, stability and to test major maize growing areas to make sound recommendations for release.展开更多
This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of devel...This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of developing protection strategies. We sampled leaves of B. aegyptiaca in each individual from each site to extract and amplify a fragment of mitochondrial DNA including cytochrome b and then carefully preserved. DNA extraction, polymerase chain amplification and sequencing of MT-CYB were performed in 64 individuals. Genetic diversity and structure of B. aegyptiaca were determined using the MEGA, DNasp and Arlequin software. The results showed a high haplotype diversity and low nucleotide diversity, indicating a population expansion linked to an important gene flow. Genetic distances between populations were positively correlated with geographic distance. The importance of having highlighted this genetic differentiation of the B. aegyptiaca species between these sites is to be able to understand the degree of genetic heterogeneity of each and correlate it with adaptability because genetic diversity influences the adaptation of the species.展开更多
Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influe...Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.展开更多
Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were th...Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.展开更多
Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions var...Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.展开更多
Duchenne muscular dystrophy (DMD) is a hereditary, progressive muscular disorder inherited in an X-linked recessive pattern (Xp21). It typically manifests in childhood and follows a severe, rapid progression. Only mal...Duchenne muscular dystrophy (DMD) is a hereditary, progressive muscular disorder inherited in an X-linked recessive pattern (Xp21). It typically manifests in childhood and follows a severe, rapid progression. Only males are affected, while females are usually carriers. Given the genetic nature of DMD, genetic counseling is an essential service for individuals affected by or at risk of carrying the disease. This service provides not only crucial medical information but also psychosocial support and ongoing management for both patients and their families. Since the discovery of the dystrophin gene in 1987, advancements in molecular genetics have made it possible to precisely identify the genes responsible for many neuromuscular diseases. These developments have revolutionized diagnosis, prognosis, and most importantly, genetic counseling, offering significant benefits for both patients and their families. To highlight the significance of these advancements, this case report focuses on a 10-year-old boy (Y) diagnosed with DMD. It emphasizes the familial nature of the disease, with Y’s two brothers, three cousins, and two maternal uncles also affected, underscoring the inherited pattern of DMD. This reinforces the critical need for early intervention, particularly in regions with high consanguinity, such as North Africa and the Middle East, where genetic counseling and prenatal diagnosis are even more essential. Additionally, the report explores the clinical presentation, diagnostic findings, and promising emerging treatments, including RNA-based therapies, which may play a key role in the future management of DMD. In light of the above, this study underscores the importance of prenatal diagnosis and genetic counseling, particularly in regions like Morocco, where consanguinity rates are notably high. By focusing on preconception care and early genetic intervention, families can be better informed, leading to more effective disease management and support.展开更多
Objective: Hereditary breast and ovarian cancer syndrome (HBOC) increases the risk of developing breast, ovarian, prostate, and pancreatic cancers. With the insurance coverage for BRCA genetic testing, the number of i...Objective: Hereditary breast and ovarian cancer syndrome (HBOC) increases the risk of developing breast, ovarian, prostate, and pancreatic cancers. With the insurance coverage for BRCA genetic testing, the number of individuals diagnosed with HBOC has increased. To use these test results effectively, cascade genetic testing (CGT) is recommended for at-risk relatives;however, it is not yet widely available. The purpose of this study was to investigate the willingness of the general population to share genetic test results and undergo CGT, as well as to analyze the factors influencing these decisions. Based on these findings, the study aimed to identify the types of support needed to support the sharing of genetic test results and promote the use of CGT. Methods: An online survey was conducted with 500 participants (50 men and women from each of the five generations, ranging from 20 to 69 years). Results: Among the HBOC blood relatives, 51.2% wanted to share the genetic results and 71.9% expressed a willingness to undergo CGT. “Matters to be shared with relatives” and “Helpful for my cancer prevention” were identified as key factors promoting the willingness to share the BRCA genetic test results and undergo CGT. The motivation for “Helpful for my cancer prevention” had a particularly strong influence on the decision to undergo CGT. Conclusion: In the general population, there is an emerging understanding that the genetic information impacts not only the individuals but also their entire families and can be valuable for cancer prevention. To promote the sharing of BRCA genetic test results and CGT uptake, the healthcare providers should offer support tailored to each family’s circumstances and establish cancer prevention measures recommended for HBOC.展开更多
Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathoge...Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathogenesis.Herein,we review the current progress in genetics and epigenetics to examine genetic variants,susceptibility factors,and the epigenetic regulatory mechanisms implicated in CS.Through an analysis of diverse genetic markers,chromosomal abnormalities,and epigenetic modifications,the correlation between genetic predisposition and environmental influences in CS pathogenesis is elucidated.By integrating these genetic and epigenetic findings,this study aims to clarify the underlying etiology of CS to provide guidance on future clinical interventions and promote the development of personalized therapeutic strategies.展开更多
Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique ...Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.展开更多
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ...This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.展开更多
Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic qu...Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic quality of Chinese hamsters.Here,we developed a novel Chinese hamster genetic quality detection system using single-nucleotide polymorphism(SNP)markers.To find SNP loci,we conducted whole genome sequencing on 24 Chinese hamsters.Then,we employed an SNP locus screening criterion that we set up previously and initially screened 214 SNP loci with wide genome distribution and high polymorphism level.Subsequently,we developed the SNP detection system using a multitarget region capture technique based on second-generation sequencing,and a 55 SNP panel for genetic evaluation of Chinese hamster populations was developed.PopGen.32.analysis results showed that the average effective allele number,Shannon index,observed heterozygosity,expected heterozygosity,average heterozygosity,polymorphism information,and other genetic parameters of Chinese hamster population A were higher than those in population B.Using scientific screening and optimization,we successfully developed a novel Chinese hamster SNP genetic detection system that can efficiently and accurately analyze the genetic quality of the Chinese hamster population.展开更多
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa...This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.展开更多
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ...To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.展开更多
Introduction Tibetan sheep,economically important animals on the Qinghai–Tibet Plateau,have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective ...Introduction Tibetan sheep,economically important animals on the Qinghai–Tibet Plateau,have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective breeding.However,most current research focuses on one or two breeds,and lacks a comprehensive representa-tion of the genetic diversity across multiple Tibetan sheep breeds.This study aims to fill this gap by investigating the genetic structure,diversity and high-altitude adaptation of 6 Tibetan sheep breeds using whole-genome rese-quencing data.Results Six Tibetan sheep breeds were investigated in this study,and whole-genome resequencing data were used to investigate their genetic structure and population diversity.The results showed that the 6 Tibetan sheep breeds exhibited distinct separation in the phylogenetic tree;however,the levels of differentiation among the breeds were minimal,with extensive gene flow observed.Population structure analysis broadly categorized the 6 breeds into 3 distinct ecological types:plateau-type,valley-type and Euler-type.Analysis of unique single-nucleotide polymor-phisms(SNPs)and selective sweeps between Argali and Tibetan sheep revealed that Tibetan sheep domestication was associated primarily with sensory and signal transduction,nutrient absorption and metabolism,and growth and reproductive characteristics.Finally,comprehensive analysis of selective sweep and transcriptome data sug-gested that Tibetan sheep breeds inhabiting different altitudes on the Qinghai–Tibet Plateau adapt by enhancing cardiopulmonary function,regulating body fluid balance through renal reabsorption,and modifying nutrient diges-tion and absorption pathways.Conclusion In this study,we investigated the genetic diversity and population structure of 6 Tibetan sheep breeds in Qinghai Province,China.Additionally,we analyzed the domestication traits and investigated the unique adapta-tion mechanisms residing varying altitudes in the plateau region of Tibetan sheep.This study provides valuable insights into the evolutionary processes of Tibetan sheep in extreme environments.These findings will also contribute to the preservation of genetic diversity and offer a foundation for Tibetan sheep diversity preservation and plateau animal environmental adaptation mechanisms.展开更多
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金supported by grants from the National Key Research&Development Plan(Grants Nos.2022YFF10030022022YFD1200502)+7 种基金National Natural Science Foundation of China(Grant Nos.3237269631991182)Wuhan Biological Breeding Major Project(Grant No.2022021302024852)Key Project of Hubei Hongshan Laboratory(2021hszd007)HZAU-AGIS Cooperation Fund(Grant No.SZYJY2023022)Funds for High Quality Development of Hubei Seed Industry(HBZY2023B004)Hubei Agriculture Research System(2023HBSTX4-06)Hubei Key Research&Development Plan(Grants Nos.2022BBA0066,2022BBA0062)。
文摘Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.
基金supported by Innovation Scientists and Technicians Troop Construction Projects of Henan Province(Grant No.212101510003)the Central Plains Scholar Workstation Project(Grant No.224400510002)+1 种基金the Youth Science Foundation of Henan Province(Grant No.202300410136)the Experimental Development Foundation of Henan University of Science and Technology(Grant No.SY2324004)。
文摘Paeonia suffruticosa Andr.is an endemic shrub flower in China with 2n=10.This study used 228 cultivars from four populations,i.e.,Jiangnan,Japan,Northwest,and Zhongyuan,as materials to explore the genetic diversity levels among different populations of tree peony varieties.The results showed that 34 bands were amplified using five pairs of cp SSR primers,with an average of 6.8 bands per primer pair.The average number of different alleles(N_(a)),effective alleles(N_(e)),Shannon's information index(I),diversity(H),and polymorphic information content(PIC)were 3.600,2.053,0.708,0.433,and 0.388,respectively.The PIC value was between 0.250 and 0.500,indicating a moderate level of polymorphism for the five cp SSR primer pairs.The genetic diversity levels of peony cultivars varied among different populations,with the Northwest population showing relatively lower levels(I=0.590,H=0.289,and PIC=0.263).A total of 52 haplotypes were identified in the four examined populations,and the number of haplotypes per population ranged from 11 to 22.Forty-four private haplotypes were detected across populations,and the Northwest population exhibiting the highest count of private haplotypes with 17.The mean number of effective number of haplotypes(N_(eh)),haplotypic richness(R_(h)),and diversity(H)were 8.351,6.824,and 0.893,respectively.Analysis of molecular variance indicated that genetic variation within tree peony germplasm was greater than that between germplasm resources,and the main variation was found within individuals of peony germplasm.Cluster analysis,principal coordinate analysis,and genetic structure analysis classified tree peonies from different origins into two groups,indicating a certain degree of genetic differentiation among these four tree peony cultivation groups.This study provides a theoretical basis for the exploration,utilization,and conservation of peony germplasm resources,as well as for research on the breeding of excellent varieties.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
文摘The mussel is one of the main cultivated species in the world.A significant challenge faced by suspension-cultured mussels is the high incidence of mussel fall-off from cultivation ropes,adversely impacting harvest yields,which have been documented at commercial mussel farms in the United Kingdom,the United States of America,Canada,Spain,New Zealand and China.Byssus is an important attachment structure for marine mussels,and weakness in byssal thread attachment is a major factor leading to mussel detachment from ropes.To investigate the relationship between genetic variability and byssal thread phenotypic characteristics in the hard-shelled mussel(Mytilus coruscus),we collected three wild populations of M.coruscus from different latitudes in the East China Sea,including the Shengsi(SS),Jiaojiang(JJ),and Fuding(FD)populations.The genetic diversity and structure of these populations were investigated using 10 microsatellite loci.The mean observed heterozygosity(Ho)in the SS population was 0.44,higher than the mean Ho values of the JJ(0.40)and FD(0.39)populations.The mean inbreeding coefficients(F_(is))in the SS population was 0.20,lower than the mean F_(is)values of the JJ(0.33)and FD populations(0.40).These results revealed that the SS population exhibited higher genetic diversity compared to the other two populations.The different numbers of private alleles(P_(a))in the three populations,ranging from 10 to 17,suggest that these populations have experienced selective pressures from various environments.Moreover,genetic differentiation was observed in the genetic distance between the SS population and the other two populations.We also examined the phenotypic characteristics of their byssal threads.There were significant differences in byssus attachment strength among the three populations,with the SS population located at the highest latitude secreting more byssal threads and exhibiting greater byssal breaking force and plaque adhesion strength,while the Fuding(FD)population located at the lowest latitude had the weakest byssal attachment.The observed differentiation in private alleles and byssus phenotypes might suggest that the three wild populations have experienced different environmental selective pressures.This study provides insight for future genetic enhancement programs aimed at improving byssus attachment in M.coruscus.
基金Supported by Science and Technology Development Plan Project of Weifang,No.2023YX005。
文摘BACKGROUND Cleidocranial dysplasia(CCD)is an infrequent clinical condition with an autosomal dominant inheritance pattern.It is characterized by abnormal clavicles,patent sutures and fontanelles,supernumerary teeth,and short stature.Approximately 60%-70%of patients with CCD have mutations in the RUNX family transcription factor 2 gene.However,prenatal diagnosis of CCD is difficult when the family history is unknown.CASE SUMMARY We report a rare case of fetal CCD with an unknown family history,confirmed by prenatal ultrasonography and genetic testing at a gestational age of 16 weeks.The genetic reports indicated that the fetus carried pathogenic mutations in the RUNX family transcription factor 2 gene(c.674G>A).After careful consideration,the pregnant woman and her family decided to continue the pregnancy.CONCLUSION Definitive prenatal diagnosis of CCD should include family history,ultrasound diagnosis,and genetic analysis,especially if family history is unknown.
文摘Maize is an important source of calories and protein in human lives in many countries of the world and is the main staple food in Africa, particularly in eastern Africa. In the Sudan, the low yield of maize was mainly due to the use of low yielding landraces. It is necessary to carry out breeding programs that deal with the production of high yielding, adaptable new varieties. Therefore, this study aimed to estimate genetic variability, heritability, genotypic performance and interrelationships among the traits. Ten maize genotypes evaluated at White Nile Research Station Farm, Kosti, of the Agricultural Research Corporation (ARC), Wad Medani Sudan were planted in a randomized complete block design with three replications during the two seasons of 2021 and 2022. Most evaluated genotypes exhibited a wide and significant variation in the 11 measured traits. Genotypic coefficient of variation and genetic advance were recorded for days to 50% tasseling, ear diameter (cm), number of grains per row and grain yield (t/ha) in both seasons. High heritability and genetic advance were recorded for grain yield, ear length, ear height, plant height, number of rows per ear, ear weight, days to 50% tasseling, 100-grain weight and days to 50% silking. Moreover, there was a highly significant and positive correlation of grain yield with number of rows per ear (r = 0.479), ear length (r = 0.381), 100-grain weight (r = 0.344) and days to 50% tasseling (r = 0.214). The highest yielding five genotypes across the seasons were TZCOM1/ZDPSYN (4.2 t/ha), EEPVAH-3 (4.2 t/ha), F2TWLY131228 (4.1 t/ha), PVA SYN6F2 (3.9 t/ha) and EEPVAH-9 (3.8 t/ha) these were needed to check the adaptability, stability and to test major maize growing areas to make sound recommendations for release.
文摘This study evaluated the molecular characterization of different ecotypes of B. aegyptiaca populations in the four sites: Koily alpha, Labgar, Ranérou and Ballou according to the environment with the aim of developing protection strategies. We sampled leaves of B. aegyptiaca in each individual from each site to extract and amplify a fragment of mitochondrial DNA including cytochrome b and then carefully preserved. DNA extraction, polymerase chain amplification and sequencing of MT-CYB were performed in 64 individuals. Genetic diversity and structure of B. aegyptiaca were determined using the MEGA, DNasp and Arlequin software. The results showed a high haplotype diversity and low nucleotide diversity, indicating a population expansion linked to an important gene flow. Genetic distances between populations were positively correlated with geographic distance. The importance of having highlighted this genetic differentiation of the B. aegyptiaca species between these sites is to be able to understand the degree of genetic heterogeneity of each and correlate it with adaptability because genetic diversity influences the adaptation of the species.
文摘Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.
文摘Varietal deficiencies of upland rice lead to a low paddy grain yield. The aim of this study was to mutagenesis upland rice varieties to improve their agronomic performance. Seeds of varieties FKR45N and FKR47N were therefore irradiated with doses 300, 350 and 400 Gy. The irradiated seeds were sown and the panicles of the M1 plants were individually harvested, and then were advanced to M4 using the “one panicle - one progeny” method. The agronomic performance of M4 lines was compared to that of their parent. The gamma ray mutagenesis has induced significant variability in five yield components, i.e., plant height, main panicle length, total numbers of tillers and productive tillers and paddy grain yield between mutant lines. The highest variabilities were shown for the total number of tillers and the number of productive tillers as well as FKR45N (CV% = 40 % and 36%) and FKR47N (CV% = 31% and 30%) mutant lines. Principal component analysis led to rank the mutant lines from each variety in three clusters. The Pearson correlation showed that the paddy grain yield was significantly and positively correlated with the number of productive tillers (r = 0.61) and plant height (r = 0.66) for FKR47N mutant lines, and these correlation coefficients were r = 0.52 and r = 0.51 for FKR45N mutant lines, respectively. Gamma-ray irradiation also induced an earliness of 50% flowering of 62 days after sowing (DAS) in two FKR45N mutant lines and 67 DAS in one of KR47N mutant lines. The paddy grain yield was improved by 120% and 20% in two FKR45N and FKR47N mutant lines, respectively. A dwarf FKR45N mutant line with an early flowering of 67 DAS and a paddy grain yield (2.34 t ha−1) was generated. These results suggested that any positive increase in the six quantitative traits will increase the paddy grain yield.
文摘Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.
文摘Duchenne muscular dystrophy (DMD) is a hereditary, progressive muscular disorder inherited in an X-linked recessive pattern (Xp21). It typically manifests in childhood and follows a severe, rapid progression. Only males are affected, while females are usually carriers. Given the genetic nature of DMD, genetic counseling is an essential service for individuals affected by or at risk of carrying the disease. This service provides not only crucial medical information but also psychosocial support and ongoing management for both patients and their families. Since the discovery of the dystrophin gene in 1987, advancements in molecular genetics have made it possible to precisely identify the genes responsible for many neuromuscular diseases. These developments have revolutionized diagnosis, prognosis, and most importantly, genetic counseling, offering significant benefits for both patients and their families. To highlight the significance of these advancements, this case report focuses on a 10-year-old boy (Y) diagnosed with DMD. It emphasizes the familial nature of the disease, with Y’s two brothers, three cousins, and two maternal uncles also affected, underscoring the inherited pattern of DMD. This reinforces the critical need for early intervention, particularly in regions with high consanguinity, such as North Africa and the Middle East, where genetic counseling and prenatal diagnosis are even more essential. Additionally, the report explores the clinical presentation, diagnostic findings, and promising emerging treatments, including RNA-based therapies, which may play a key role in the future management of DMD. In light of the above, this study underscores the importance of prenatal diagnosis and genetic counseling, particularly in regions like Morocco, where consanguinity rates are notably high. By focusing on preconception care and early genetic intervention, families can be better informed, leading to more effective disease management and support.
文摘Objective: Hereditary breast and ovarian cancer syndrome (HBOC) increases the risk of developing breast, ovarian, prostate, and pancreatic cancers. With the insurance coverage for BRCA genetic testing, the number of individuals diagnosed with HBOC has increased. To use these test results effectively, cascade genetic testing (CGT) is recommended for at-risk relatives;however, it is not yet widely available. The purpose of this study was to investigate the willingness of the general population to share genetic test results and undergo CGT, as well as to analyze the factors influencing these decisions. Based on these findings, the study aimed to identify the types of support needed to support the sharing of genetic test results and promote the use of CGT. Methods: An online survey was conducted with 500 participants (50 men and women from each of the five generations, ranging from 20 to 69 years). Results: Among the HBOC blood relatives, 51.2% wanted to share the genetic results and 71.9% expressed a willingness to undergo CGT. “Matters to be shared with relatives” and “Helpful for my cancer prevention” were identified as key factors promoting the willingness to share the BRCA genetic test results and undergo CGT. The motivation for “Helpful for my cancer prevention” had a particularly strong influence on the decision to undergo CGT. Conclusion: In the general population, there is an emerging understanding that the genetic information impacts not only the individuals but also their entire families and can be valuable for cancer prevention. To promote the sharing of BRCA genetic test results and CGT uptake, the healthcare providers should offer support tailored to each family’s circumstances and establish cancer prevention measures recommended for HBOC.
基金Supported by the National Natural Science Foundation of China,No.82460940Major Project of Gansu Province Joint Fund,No.23JRRA1519+2 种基金Key Science and Technology Project of Gansu Province,No.21ZD4FA009Natural Science Foundation of Gansu Province,No.24JRRA1040Gansu Province Famous Traditional Chinese Medicine Inheritance Studio Project。
文摘Congenital scoliosis(CS)is a prevalent spinal deformity with a multifaceted etiology that remains incompletely understood.Recent advances in genetic and epigenetic research have provided novel insights into CS pathogenesis.Herein,we review the current progress in genetics and epigenetics to examine genetic variants,susceptibility factors,and the epigenetic regulatory mechanisms implicated in CS.Through an analysis of diverse genetic markers,chromosomal abnormalities,and epigenetic modifications,the correlation between genetic predisposition and environmental influences in CS pathogenesis is elucidated.By integrating these genetic and epigenetic findings,this study aims to clarify the underlying etiology of CS to provide guidance on future clinical interventions and promote the development of personalized therapeutic strategies.
基金supported by the National Key Resarch and Development Program of China(Grant No.2023YFD1200802)the Base Bank of Lingnan Rice Germplasm Resources Project,China(Grant No.2024B1212060009).
文摘Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.
文摘This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.
基金National Key Research and Development Program for Young scientists,Grant/Award Number:2021YFF0703200National Natural Foundation Joint Fund for Regional Innovation and Development,Grant/Award Number:U21A20194+1 种基金National Natural Science Foundation of China,Grant/Award Number:32170540National Key Research and Development Program,Grant/Award Number:2022YFF0711005。
文摘Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic quality of Chinese hamsters.Here,we developed a novel Chinese hamster genetic quality detection system using single-nucleotide polymorphism(SNP)markers.To find SNP loci,we conducted whole genome sequencing on 24 Chinese hamsters.Then,we employed an SNP locus screening criterion that we set up previously and initially screened 214 SNP loci with wide genome distribution and high polymorphism level.Subsequently,we developed the SNP detection system using a multitarget region capture technique based on second-generation sequencing,and a 55 SNP panel for genetic evaluation of Chinese hamster populations was developed.PopGen.32.analysis results showed that the average effective allele number,Shannon index,observed heterozygosity,expected heterozygosity,average heterozygosity,polymorphism information,and other genetic parameters of Chinese hamster population A were higher than those in population B.Using scientific screening and optimization,we successfully developed a novel Chinese hamster SNP genetic detection system that can efficiently and accurately analyze the genetic quality of the Chinese hamster population.
文摘This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions.
文摘To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms.
基金supported by the Natural Science Foundation of Qinghai Province(No.2022-ZJ-901)the National Breeding Joint Research Project。
文摘Introduction Tibetan sheep,economically important animals on the Qinghai–Tibet Plateau,have diversified into numerous local breeds with unique characteristics through prolonged environmental adaptation and selective breeding.However,most current research focuses on one or two breeds,and lacks a comprehensive representa-tion of the genetic diversity across multiple Tibetan sheep breeds.This study aims to fill this gap by investigating the genetic structure,diversity and high-altitude adaptation of 6 Tibetan sheep breeds using whole-genome rese-quencing data.Results Six Tibetan sheep breeds were investigated in this study,and whole-genome resequencing data were used to investigate their genetic structure and population diversity.The results showed that the 6 Tibetan sheep breeds exhibited distinct separation in the phylogenetic tree;however,the levels of differentiation among the breeds were minimal,with extensive gene flow observed.Population structure analysis broadly categorized the 6 breeds into 3 distinct ecological types:plateau-type,valley-type and Euler-type.Analysis of unique single-nucleotide polymor-phisms(SNPs)and selective sweeps between Argali and Tibetan sheep revealed that Tibetan sheep domestication was associated primarily with sensory and signal transduction,nutrient absorption and metabolism,and growth and reproductive characteristics.Finally,comprehensive analysis of selective sweep and transcriptome data sug-gested that Tibetan sheep breeds inhabiting different altitudes on the Qinghai–Tibet Plateau adapt by enhancing cardiopulmonary function,regulating body fluid balance through renal reabsorption,and modifying nutrient diges-tion and absorption pathways.Conclusion In this study,we investigated the genetic diversity and population structure of 6 Tibetan sheep breeds in Qinghai Province,China.Additionally,we analyzed the domestication traits and investigated the unique adapta-tion mechanisms residing varying altitudes in the plateau region of Tibetan sheep.This study provides valuable insights into the evolutionary processes of Tibetan sheep in extreme environments.These findings will also contribute to the preservation of genetic diversity and offer a foundation for Tibetan sheep diversity preservation and plateau animal environmental adaptation mechanisms.