To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic me...To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.展开更多
The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Ch...The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Chad.It has been previously studied petrologically,but its petrogenesis has remained poorly known.Petrographic and whole-rock geochemical data presented in this article highlight their magma genesis and geodynamic evolution.The BSP consists of medium-to coarse-grained syenites associated with minor microdiorites,which occur as syn-plutonic dikes and mafic microgranular enclaves(MME)coarse-and medium-grained syenites outcrop respectively to the core and the border of the BSP.The syenite displays high-K and alkaline to trans-alkaline affinity.Petrographic and geochemical data suggest that medium-to coarse-grained syenites are from single magma source that evolved and differentiated by fractional crystallization in a magma reservoir.REE profiles show enriched LREEs(La_(N)/Yb_(N)=6.19-45.55)while HREEs show an almost flat profile(Dy_(N)/Yb_(N)=1.0-2.23),and the La/Sm and Sm/Yb ratios have led to propose that the aforementioned rocks derived from the partial melting of a garnet-spinel-lherzolite mantle source.Negative Nb and Ta anomalies indicate that this mantle source was modified by the addition of subduction-related material.Th/Yb ratios associated with high Ba/La ratios indicate that enrichment of the source could be related to slab-derived fluids.The parental magma of the BSP was generated by partial melting of the metasomatized lithospheric mantle that was modified into arc-magmatism material in a subduction setting.Its emplacement took place in two successive stages:a static stage of fractional crystallization and crystal settling in a deep magma source and a dynamic stage in a shear deformation setting during which stratified magma rises towards the upper crust,with evolved syenite magma being emplaced first and diorite later.The emplacement of the BSP was probably controlled by the evolution of the Tcholliré-Banyo Fault and M'BéréShear Zone during the Pan-African orogeny.展开更多
The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, inc...The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.展开更多
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood....Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.展开更多
The Huoshaoyun deposit in the Karakorum area of NW China is the world’s largest zinc-lead carbonate ore deposit.Here we investigate the genesis of the mineralization based on multiproxy investigations.The deposit con...The Huoshaoyun deposit in the Karakorum area of NW China is the world’s largest zinc-lead carbonate ore deposit.Here we investigate the genesis of the mineralization based on multiproxy investigations.The deposit contains zinc-lead carbonate and sulfide minerals,with smithsonite(Smt),cerussite(Cer),and sulfides accounting for 85%,10%,and 5%of the total lead and zinc resources,respectively.Three ore-forming stages,involving Smt,Cer,and sulfides ores were summarized.The Smt mineralization is characterized by veined,massive,and stratified Smt forming horizontal sedimentary layered ore and vertical feeder veins similar to the SEDEX-type deposits.The sulfide and Cer veins display typical hydrothermal characteristics and are superimposed on the massive Smt ores.The Smt ores show high Li,Be,Cr,Y,Ba,Nd,Yb,and Zr contents,whereas the Cer veins have extremely high Sr contents(up to 3814–9174 ppm)and low Zr contents(less than 0.01 ppm).Galena and sphalerite show higher Cd concentrations compared to Smt and Cer ores.The Smt ores differ with different spatial locations,with Smt ores formed at the vent haveδ^(66)Zn values of+0.15‰to+0.21‰,the massive Smt formed close to the vent show a value of+0.13‰,and those formed away from the vent show a value of 0.05‰,all values being close to 0.The sulfides haveδ^(66)Zn values of−0.09‰to+0.04‰.The C-O isotopes of Smt ores are similar to both altered and unaltered host limestone,suggesting that the limestone was a potential source for carbon and oxygen.Quartz with veined Smt shows magmatic signatures withδ^(18)OVSMOW of+1.14‰to+2.23‰,high Pb(115–401 ppm)and Zn concentrations(390–997 ppm),whereas quartz associated with sulfide has meteoric fluid signature with the lowestδ^(18)OVSMOW(−14‰to−10.7‰),low Pb(11.6–49.0 ppm)and Zn(18.1–72.8 ppm)concentrations.The temperature of equilibration computed based on oxygen isotope fractionation between Smt and coeval quartz indicate a dual source with that of quartz derived from an aqueous fluid,whereas the source for Smt might involve CO_(2)or HCO_(3)^(−).We trace multiple metallogenic stages for this deposit including exhalation,hydrothermal deposition,and fault-controlled sulfide vein formation.The largest orebody(III-1)preserves a 16 Mt reserve of Zn and was formed by crust-mantle interaction at ca.195 Ma in the early development of the Linjitang post-arc rift system.Fluid convection,zinc enrichment driven by granitic magma,volcanic activity,and karst alteration induced by acid rain in a lagoonal environment promoted ore enrichment.展开更多
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and...Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.展开更多
Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained wit...Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained with the aid of the Gell-Mann-Oakes-Renner formula, giving values close to those obtained by the Standard Model, the current quark’s volume at ordinary nuclear temperature being obtained as sum of theoretic apparent volumes of preonic kerneloids. The maximal densities of the current quarks: strange (s), charm (c), bottom (b), and top (t) resulted in the range (0.8 - 4.2) × 1018 kg/m3, as values which could be specific to possible quark stars, in concordance with previous results. By the preonic quark model of CGT, the possible structure of a quark star resulted from the intermediary transforming: Ne(2d+u)→s−¯+λ−and the forming of composite quarks with the structure: C−(λ−-s−¯-λ−) and C+(s−¯-λ−-s−¯), and of Sq-layers: C+C−C+ and C−C+C− which can form composite quarks: Hq±=(SqS¯qSq);(S¯qSqS¯q), corresponding to a constituent mass: M(Hq) = (12,642;12,711) MeV/c2, the forming of heavier quarks inside a quark star resulting as possible in the form: Dq = n3Cq, (n ≥ 3). The Tolman-Oppenheimer limit: MT=0.7M⊙for neutron stars can also be explained by the CGT’s quark model.展开更多
A large gas field with reserves of nearly 200 billion m^(3)dBZ19-6dwas discovered in the Bozhong Depression in the Bohai Bay Basin in 2018.There is a considerable difference between the amount of natural gas that woul...A large gas field with reserves of nearly 200 billion m^(3)dBZ19-6dwas discovered in the Bozhong Depression in the Bohai Bay Basin in 2018.There is a considerable difference between the amount of natural gas that would traditionally be expected to be generated by the thermal degradation of low-mature kerogens and the resources that have been confirmed by exploration.Therefore,the geochemical characteristics and the genesis of gas have become crucial aspects of investigating deep natural gas in the Bozhong Depression.The deep gas in the depression is predominantly methane.Its dry coefficient(C_(1)/C_(1-5))ranges from 0.73 to 0.94,which is generally characterized as wet gas.The main nonhydrocarbon gases are CO_(2)(1.26%-52.00%)and N_(2)(0.1%-0.74%),with traces of H_(2)S(10.44×10^(-6)-36.63×10^(-6) ppm).The natural gases are thermogenic oil-type gases from the Shahejie and Dongying Formations.The deep natural gas in the Bozhong Depression is mainly derived from kerogen degradation,with contributions from oil cracking gas in the BZ1/19 and BZ2/3 structures.Complex carbon isotopic reversals are caused by the filling and mixing of natural gas with different maturities from the same source,evaporative fractionation due to the filling of late-stage high-mature natural gas,and Rayleigh fractionation under deep exogenous temperatures in the presence of transition metals.Combining the analysis of the fluid properties of natural gas,the evaluation of the performance of the migration system,and the understanding of the accumulation background indicates a high possibility that the gas was supplied from multiple hydrocarbon sources over long distances in the late stage.Thus,advantageous traps with high temperatures,close proximity to source kitchens,and favorable migration conditions are the preferred targets for future natural gas exploration in the Bozhong Depression.展开更多
基金The Fund of Laoshan Laboratory under contract No.LSKJ202203602the National key R&D Program of China under contract No.2022YFC2803600the Taishan Scholarship from Shandong Province.
文摘To explore the geochemical characteristics and genesis of the elements in ferromanganese nodules from the Northwest Pacific,this study analyses the mineral composition,elemental content,occurrence phase and genetic mechanisms of samples by X-ray diffraction(XRD),inductively coupled plasma-optical emission spectrometry(ICP-OES),inductively coupled plasma-mass spectrometry(ICP-MS)and phase analysis methods.The results show that ferromanganese nodules are mainly hydrogenetic,and Mn/Fe content ratio ranges from 0.95 to 2.05.The major minerals are vernadite(δ-MnO_(2))and amorphous ferric oxyhydroxide(FeOOH),and the secondary minerals include todorokite,birnessite,quartz and plagioclase.Ferromanganese nodules contain high contents of Co(0.24%-0.42%),Cu(0.23%-0.73%),Ni(0.33%-0.86%)and rare earth elements(REEs,1192-1990μg/g),which have positive Ce and negative Y anomalies but no Eu anomaly.A cluster analysis suggests that the elements in ferromanganese nodules can be divided into three groups:hydrogenetic components,including Fe,Ti,Zr,P,Pb,Co,Ba,Sr,V and REEs;diagenetic components,including Mn,Ni,Mg,Zn and Cu;and detrital components,including Al,Na,K and Ca.According to chemical leaching,ferromanganese nodules can be divided into four phases:Na,Ca,Mg and Sr are mainly enriched in the carbonate phase;Mn,Co,Ni and Ba are mainly enriched in the Mn-oxide phase;Fe,P,Ti,Cu,Pb,V,Zn,Zr and REEs are mainly enriched in the Fe-oxide phase;and Al and K are mainly enriched in the residual phase.A combination of the two different methods reveal selective enrichment of metal elements from seawater by ferromanganese nodules,featuring multisource mineralization.Moreover,through ion exchange and adsorption,approximately 71.2%of REEs are enriched in the Fe-oxide phase,15.4%in the Mn-oxide phase and 12.4%in the residual phase,while REE contents in the carbonate phase are relatively low.In addition,under the oxic conditions of seawater,the oxidation of soluble Ce^(3+)to insoluble CeO_(2)together with Fe-Mn minerals results in Ce enrichment in ferromanganese nodules.This study provides a reference for the metallogenesis of ferromanganese nodules from the Northwest Pacific.
文摘The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Chad.It has been previously studied petrologically,but its petrogenesis has remained poorly known.Petrographic and whole-rock geochemical data presented in this article highlight their magma genesis and geodynamic evolution.The BSP consists of medium-to coarse-grained syenites associated with minor microdiorites,which occur as syn-plutonic dikes and mafic microgranular enclaves(MME)coarse-and medium-grained syenites outcrop respectively to the core and the border of the BSP.The syenite displays high-K and alkaline to trans-alkaline affinity.Petrographic and geochemical data suggest that medium-to coarse-grained syenites are from single magma source that evolved and differentiated by fractional crystallization in a magma reservoir.REE profiles show enriched LREEs(La_(N)/Yb_(N)=6.19-45.55)while HREEs show an almost flat profile(Dy_(N)/Yb_(N)=1.0-2.23),and the La/Sm and Sm/Yb ratios have led to propose that the aforementioned rocks derived from the partial melting of a garnet-spinel-lherzolite mantle source.Negative Nb and Ta anomalies indicate that this mantle source was modified by the addition of subduction-related material.Th/Yb ratios associated with high Ba/La ratios indicate that enrichment of the source could be related to slab-derived fluids.The parental magma of the BSP was generated by partial melting of the metasomatized lithospheric mantle that was modified into arc-magmatism material in a subduction setting.Its emplacement took place in two successive stages:a static stage of fractional crystallization and crystal settling in a deep magma source and a dynamic stage in a shear deformation setting during which stratified magma rises towards the upper crust,with evolved syenite magma being emplaced first and diorite later.The emplacement of the BSP was probably controlled by the evolution of the Tcholliré-Banyo Fault and M'BéréShear Zone during the Pan-African orogeny.
基金jointed supported by National Key Research and Development Program of China (Grant No. 2021YFC2901704)the National Natural Science Foundation of China (Grant No. 41930430)the State Key Laboratory of Lithospheric Evolution, IGGCAS (Grant No. SKL-Z201905)。
文摘The Jianbeigou gold deposit is a typical lode gold deposit in the Qinling metallogenic belt, located on the southern margin of the North China Craton. Three stages of the hydrothermal process can be distinguished, including the quartz ± pyrite, quartz-polymetallic sulfide, and quartz-carbonate ± pyrite stages. From the early to late stages, the homogenization temperatures of primary fluid inclusions are 281–362°C, 227–331°C, and 149–261°C, respectively. The corresponding salinities estimated for these fluids are 3.9–9.9 wt%, 0.4–9.4 wt%, and 0.7–7.2 wt% Na Cl equiv. Combined with laser Raman spectroscopy data, the ore-forming fluid belongs to a H_(2)O-CO_(2)-Na Cl ± CH_4 system with medium–low temperature and salinity. The δ~(18)Ofluid and δD values for the quartz veins are-1.0‰ to 6.0‰ and-105‰ to-84‰, respectively, which indicates that the ore-forming fluid is of mixed source, mainly derived from magma, with a contribution from meteoric water. Pyrite has been identified into three generations based on mineral paragenetic sequencing, including Py1, Py2, and Py3. The pyrites have δ~(34)S sulfur isotopic compositions from three stages between 3.7‰ and 8.4‰, indicating that sulfur mainly originated from magma. Te, Bi, Sb, and Cu contents in pyrite were all high and showed a strong correlation with Au concentrations. Native gold and the Au-Ag-Bi telluride minerals were formed concurrently, and the As concentration was low and decoupled from the Au content. Therefore, Te, Bi, Sb and other low-melting point chalcophile elements play an important role for gold mineralization in arsenic-deficient ore-forming fluid. Combined with the geological setting, evolution of pyrite, and ore-fluids geochemistry, we propose that the Jianbeigou deposit can be classified as a magmatic–hydrothermal lode gold deposit. Gold mineralization on the southern margin of the North China Craton is related to Early Cretaceous magmatism and formed in an extensional setting.
文摘Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.
基金the National Natural Science Foundation of China(Grant Nos.42272075,42250202,41672088,42302073,and 41802093)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(24llgqb001)+1 种基金well as the 2018 Sino-German(CSC-DAAD)Postdoc Scholarship Program,the UCAS Joint PhD Training Program of China[UCAS(2015)37]aFoundation of Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences(KLMR2017-10).
文摘The Huoshaoyun deposit in the Karakorum area of NW China is the world’s largest zinc-lead carbonate ore deposit.Here we investigate the genesis of the mineralization based on multiproxy investigations.The deposit contains zinc-lead carbonate and sulfide minerals,with smithsonite(Smt),cerussite(Cer),and sulfides accounting for 85%,10%,and 5%of the total lead and zinc resources,respectively.Three ore-forming stages,involving Smt,Cer,and sulfides ores were summarized.The Smt mineralization is characterized by veined,massive,and stratified Smt forming horizontal sedimentary layered ore and vertical feeder veins similar to the SEDEX-type deposits.The sulfide and Cer veins display typical hydrothermal characteristics and are superimposed on the massive Smt ores.The Smt ores show high Li,Be,Cr,Y,Ba,Nd,Yb,and Zr contents,whereas the Cer veins have extremely high Sr contents(up to 3814–9174 ppm)and low Zr contents(less than 0.01 ppm).Galena and sphalerite show higher Cd concentrations compared to Smt and Cer ores.The Smt ores differ with different spatial locations,with Smt ores formed at the vent haveδ^(66)Zn values of+0.15‰to+0.21‰,the massive Smt formed close to the vent show a value of+0.13‰,and those formed away from the vent show a value of 0.05‰,all values being close to 0.The sulfides haveδ^(66)Zn values of−0.09‰to+0.04‰.The C-O isotopes of Smt ores are similar to both altered and unaltered host limestone,suggesting that the limestone was a potential source for carbon and oxygen.Quartz with veined Smt shows magmatic signatures withδ^(18)OVSMOW of+1.14‰to+2.23‰,high Pb(115–401 ppm)and Zn concentrations(390–997 ppm),whereas quartz associated with sulfide has meteoric fluid signature with the lowestδ^(18)OVSMOW(−14‰to−10.7‰),low Pb(11.6–49.0 ppm)and Zn(18.1–72.8 ppm)concentrations.The temperature of equilibration computed based on oxygen isotope fractionation between Smt and coeval quartz indicate a dual source with that of quartz derived from an aqueous fluid,whereas the source for Smt might involve CO_(2)or HCO_(3)^(−).We trace multiple metallogenic stages for this deposit including exhalation,hydrothermal deposition,and fault-controlled sulfide vein formation.The largest orebody(III-1)preserves a 16 Mt reserve of Zn and was formed by crust-mantle interaction at ca.195 Ma in the early development of the Linjitang post-arc rift system.Fluid convection,zinc enrichment driven by granitic magma,volcanic activity,and karst alteration induced by acid rain in a lagoonal environment promoted ore enrichment.
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金the financial support from the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0805)the postdoctoral project of Qinghai Institute of Salt Lakes(Grant No.E260DZ0401)+1 种基金the Kunlun Talent Project in Qinghai Province(Grant No.E340DZ0801)the Qinghai Provincial Department of Science and Technology Project(Grant No.2024-ZJ-722)。
文摘Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin.
文摘Based on the preonic structure of quarks obtained in a Cold genesis theory of particles (CGT), it was obtained a semi-empiric relation for the current mass of quarks specific to CGT but with the constants obtained with the aid of the Gell-Mann-Oakes-Renner formula, giving values close to those obtained by the Standard Model, the current quark’s volume at ordinary nuclear temperature being obtained as sum of theoretic apparent volumes of preonic kerneloids. The maximal densities of the current quarks: strange (s), charm (c), bottom (b), and top (t) resulted in the range (0.8 - 4.2) × 1018 kg/m3, as values which could be specific to possible quark stars, in concordance with previous results. By the preonic quark model of CGT, the possible structure of a quark star resulted from the intermediary transforming: Ne(2d+u)→s−¯+λ−and the forming of composite quarks with the structure: C−(λ−-s−¯-λ−) and C+(s−¯-λ−-s−¯), and of Sq-layers: C+C−C+ and C−C+C− which can form composite quarks: Hq±=(SqS¯qSq);(S¯qSqS¯q), corresponding to a constituent mass: M(Hq) = (12,642;12,711) MeV/c2, the forming of heavier quarks inside a quark star resulting as possible in the form: Dq = n3Cq, (n ≥ 3). The Tolman-Oppenheimer limit: MT=0.7M⊙for neutron stars can also be explained by the CGT’s quark model.
文摘A large gas field with reserves of nearly 200 billion m^(3)dBZ19-6dwas discovered in the Bozhong Depression in the Bohai Bay Basin in 2018.There is a considerable difference between the amount of natural gas that would traditionally be expected to be generated by the thermal degradation of low-mature kerogens and the resources that have been confirmed by exploration.Therefore,the geochemical characteristics and the genesis of gas have become crucial aspects of investigating deep natural gas in the Bozhong Depression.The deep gas in the depression is predominantly methane.Its dry coefficient(C_(1)/C_(1-5))ranges from 0.73 to 0.94,which is generally characterized as wet gas.The main nonhydrocarbon gases are CO_(2)(1.26%-52.00%)and N_(2)(0.1%-0.74%),with traces of H_(2)S(10.44×10^(-6)-36.63×10^(-6) ppm).The natural gases are thermogenic oil-type gases from the Shahejie and Dongying Formations.The deep natural gas in the Bozhong Depression is mainly derived from kerogen degradation,with contributions from oil cracking gas in the BZ1/19 and BZ2/3 structures.Complex carbon isotopic reversals are caused by the filling and mixing of natural gas with different maturities from the same source,evaporative fractionation due to the filling of late-stage high-mature natural gas,and Rayleigh fractionation under deep exogenous temperatures in the presence of transition metals.Combining the analysis of the fluid properties of natural gas,the evaluation of the performance of the migration system,and the understanding of the accumulation background indicates a high possibility that the gas was supplied from multiple hydrocarbon sources over long distances in the late stage.Thus,advantageous traps with high temperatures,close proximity to source kitchens,and favorable migration conditions are the preferred targets for future natural gas exploration in the Bozhong Depression.